
Sequences of Part of Speech Tags vs. Sequences of
Phrase Labels

How Do They Help in Parsing?

Gabriel Infante-Lopez1 and Maarten de Rijke2

1 FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
gabriel@famaf.unc.edu.ar

2 Informatics Institute, University of Amsterdam, The Netherlands
mdr@science.uva.nl

Abstract. We compare the contributions made by sequences of part of speech
tags and sequences of phrase labels for the task of grammatical relation finding.
Both are used for grammar induction, and we show that English labels of gram-
matical relations follow a very strict sequential order, but not as strict as POS
tags, resulting in better performance of the latter on the relation finding task.

1 Introduction
Some approaches to parsing can be viewed as a simple context free parser with the spe-
cial feature that the context free rules of the grammar used by the parser do not exist
a priori [1–3]. Instead, there is a device for generating bodies of context free rules on
demand. Collins [1] and Eisner [2] use Markov chains as the generative device, while
Infante-Lopez and De Rijke [3] use the more general class of probabilistic automata.
These devices are induced from sample instances obtained from tree-banks. The learn-
ing strategy consists of coping all bodies of rules inside the Penn Tree-bank (PTB) to
a bodies of rules sample bag which is then treated as the sample bag of an unknown
regular language. This unknown regular language is to be induced from the sample bag,
which is, later on, used for generating new bodies of rules.

Usually, the induced regular language is described by means of a probabilistic au-
tomata. The quality of the resulting automata depends on many things; the alphabet of
the target regular language being one. At least two such alphabets have been considered
in the literature: Part of Speech (POS) tags and grammatical relations (GRs), where the
latter are labels describing the relation between the main verb and its dependents; they
can be viewed as a kind of non-terminal labels. Using one or the other alphabets for
grammar induction might produce different results on the overall parsing task. Which
of the two produces “better” automata, that produce “better rules,” which in turn lead to
“better” parsing scores? This is our main research question in this paper.

Let us provide some further motivation and explanations. In order to obtain phrase
structures like the ones retrieved in [4], the dependents of a POS tag should consist

of pairs of POS tags and non-terminal labels instead of sequences of POS tags alone.
Like sequences of POS tags, sequences of pairs of POS tags and non-terminal labels
can be viewed as instances of a regular language: one whose alphabet is the product of
the set of possible POS tags and the set of possible non-terminal labels. Moreover, they
can be viewed as instances of the combination of two regular languages: one modeling
sequences of POS tags, and another modeling sequences of non-terminal labels. Infante-
Lopez and De Rijke [3] only use the first regular language for grammar induction, while
non-lexicalized approaches [5] use the second regular language, and Markovian rules
[4] use a combination of the two. Combining the regular language of POS tags and that
of non-terminal labels boosts the overall parsing performance, cf., [4, 5], but it is not
clear why this is the case. Infante-Lopez and De Rijke [3] suggest that lexicalization
improves the quality of the automata modeling sequences of POS tags, but they do not
provide any insight about the differences or the interplay between these two regular
languages.

,
NNP

NP−SBJ
NO−FUNC

NP−TMPPP−CLR
NP−OBJ

NNS
.[Pierre Vinken] [61 years] [old], [joined] [the board] [as][a nonexecutive director] [Nov. 29]

JJ VBD NN PP NN CD

Fig. 1: Information we use from each tree in the PTB.

We design and implement experiments for exploring the differences between the
regular language of POS tags and the regular language of non-terminal labels in a pars-
ing setup. Our research aims at quantifying the difference between the two and at un-
derstanding their contribution to parsing performance. To address our research question
we focus on a task that cleary isolates these two regular languages: detecting and label-
ing dependents of the main verb of a sentence. We present two approaches to dealing
with this task. In the first, we develop two grammars: one for detecting dependents and
another for labeling them. The first grammar uses sequences of POS tags as the main
feature for detecting dependents, and the second grammar uses sequences of GRs as the
main feature for labeling the dependents found by the first grammar. The overall task of
detecting and labeling dependents is performed by cascading the two grammars. In the
second approach, we build a single grammar that uses sequences of GRs as the main
feature for detecting and labeling dependents. The overall task of is done in one go by
this grammar. The two approaches differ in that the first uses sequences of GRs and
sequences of POS tags, while the second only uses sequences of GRs.

English GRs are shown to follow a strict sequential order, but not as strict as POS
tags of verbal dependents. Counterintuitively, the latter are more effective for detecting
and labeling dependents, and, hence, provide a more reliable instrument for detecting
GRs. This feature is responsible for boosting parsing performance.

2

In Section 2 we detail the task on which we focus; Section 3 builds the grammars
used in the experiments. Section 4 argues for the appropriateness of the task on which
we focus for our main research questions. Section 5 describes our experiments and an-
swers these questions. We present related work in Section 6 and conclude in Section 7.

2 Task Definition
The task we use for our experiments is to find dependents of main verbs and to deter-
mine their GR. Given a sentence, the input for the task consists of the following: (1) the
main verb of the sentence, (2) the head word for each of the chunks into which the
sentence has been split, and (3) POS tags for the heads of the chunks. The rest of the
information in the sentence is discarded. The information below the line in Figure 1
shows an example of the input data.

The output consists of a yes/no tag for each element in the input string. A POS tag
marked yes implies that the tag depends on the main verb. If a POS tag is marked yes,
the output has to specify the GR between the POS tags and the main verb. An example
of the desired output is shown in Figure 1. Tags labeled yes have been replaced by links
between the POS tags and the main verb. Not all POS tags in our example sentence bare
a relation to the main verb. More generally, there may be POS tags that depend on the
main verb but whose relation cannot be labeled by any of the labels we define below.
These links receive the NO-FUNC label. It is important to distinguish between the POS
tags that do not have a relation to the main verb and those that depend syntactically on
the main verb but whose relation cannot be labeled. The former are marked with the no
tag, while the latter are marked with the yes tag and the GR is NO-FUNC; Figure 1 has
an example.

In order to define the regular language of GRs, we codify GRs in pre-terminal sym-
bols. As an example, Figure 2 shows the verb dependents from Figure 1, nnp nn pp,
and cd, with labels as pictured, while nns jj, and nn are not in any relation to the
main verb and, consequently, they are not linked or labeled and not shown in Figure 2.
One can clearly distinguish the two regular languages that can be used for detecting
dependents of verbs: the sequences NP-SBJ and NP-OBJ PP-CLR NP-TMP are in-
stances of the regular languages whose alphabet is the set of possible GRs, while the
sequences nnp and nn pp cd are instances of the regular language whose alphabet
is the set of possible POS tags.

3 Building Grammars
We build 3 grammars; each is a PCW-grammars (see Section 3.1 for details): GD, GL,
and G. The grammar GD aims to detect main verb dependents. It uses automata that
model sequences of POS tags. The parser using GD is fed with all POS tags. For each
sentence parsed with this grammar, the parser outputs a dependency structure in which
the main verb dependents are found. The grammar GL aims to label dependents. It uses

3

PP−CLR

pp

NP−TMP

cd

NP−OBJ

nn

nn
jjnns

vbd

S

NP−SBJ

nnp

Fig. 2: The desired tree for the input in Figure 1. The subtree pictured as a triangle denotes that it
can be adjoined to both points.

automata that model sequences of GRs. The parser using GL is fed with the POS tags
that are believed to depend on the main verb. The result is a GR name for each POS tag
in the input sentence. This grammar assumes that (somehow) the right dependents have
been identified, and its task is to assign the correct label to the dependents; it assigns
a label to all elements in the the input string. The grammar G aims to detect and label
main dependents. It uses automata that model sequences of GRs together with automata
that model sequences of POS tags. The input and output of parsing with G are as for
the grammar GD.

Using GD, GL, and G we define two ways to address the relation finding task
described in Section 2: (1) We use GD for detecting dependents, and GL for labeling
the dependents that GD outputs. (2) We use G for detecting and labeling the main
dependents.

The three grammar are PCW-grammars (see Section 3.1). We build them follow-
ing the same procedure: (1) we build a bodies of rules training set extracted from the
PTB (see Section 3.2), (2) we induce an automaton from the training material (see
Section 3.4), and, (3) we build a grammar using the automata induced in step 2 (see
Section 3.3).

3.1 Grammatical Framework

We need a grammatical framework that models rule bodies as instances of a regular
language and that allows us to transform automata to grammars as directly as possible.
We use the grammatical framework of CW-grammars [6]. Based on PCFGs, they have
a clear and well-understood mathematical background and we do not need to resort to
ad-hoc parsing algorithms.

A probabilistic constrained W-grammar (PCW-grammar) is a two-level grammar
consisting of two sets of PCF-like rules (pseudo-rules and meta-rules) and three pair-
wise disjoint sets of symbols (variables, non-terminals and terminals). Pseudo-rules
and meta-rules provide mechanisms for building ‘real’ rewrite rules, which are built by
first selecting a pseudo-rule, and then using meta-rules for instantiating the variables in
the body of the pseudo-rule.

4

NNS
[Pierre Vinken], [61 years] [old], [joined][the board][as] [a nonexecutive director]

JJ
[Nov. 29] .

NNP PP CDNNNNVBD

Fig. 3: A dependency tree from which we extracted training material.

Parsing PCW-grammars requires two steps: a generation-rule step followed by a
tree-building step. Parsing with PCW-grammars can be viewed as parsing with PCF
grammars. The main difference is that in PCW-parsing derivations for variables remain
hidden in the final tree [6].

3.2 Training Material

The training material we use for building GD , GL and G always comes from sections
11–19 of the PTB. We use chunklink.pl [7] for transforming the PTB to labeled
dependency structures and for marking all the information we use. Briefly, [7] defines a
chunk to consist of a head, i.e., any word that has a labeled pointer, plus the continuous
sequence of all words around it that have an unlabeled pointer to this head. This chunk
correspond to the projection of the pre-terminal level in the original tree. Labels are
defined as concatenation of the non-terminals labels found in the PTB.

Clearly, chunklink.pl does not define an invertible procedure, i.e., its output
dependency trees can not be mapped back to the original phrase structure tree, as labels
of some intermediate constituents are deleted during pruning [7, p. 60]; some informa-
tion regarding the original attachment position of grammatical functions is also lost.
Despite this, chunklink.pl does not appear to discard too much information; the
structures it produces are meaningful. All our experiments use the same type of infor-
mation and the transformation performed with chunklink.pl does not favor one
experiment over another.

After the transformation, the resulting trees contain information about chunks and
labels (see Figure 1). From such trees, two further trees can be extracted, each contain-
ing information relevant to the 3 grammars we want to build. For the tree in Figure 1,
the trees in Figures 3 and Figure 4 can be obtained. We use these derived trees for ob-
taining the training material. The precise tree to be used depends on the grammar we
want to induce, as we will now explain.

meta-rules pseudo-rules
Adj

m
−→0.5 AdjAdj S

s
−→1 AdjNoun

Adj
m
−→0.5 Adj Adj

s
−→0.1 big

Noun
s
−→1 ball

...

Table 1: Example of a PCW-grammar.

5

VBDNP−SBJ NP−OBJ PP−CLR NP−TMP NO−FUNC

NNP NN PP CD .

Fig. 4: The tree representation we use, extracted from tree in Figure 1.

For the grammar for detecting dependants GD, the dependency trees used are like
the one shown in Figure 3, and Table 2 shows the sample sets of right and left depen-
dents we extracted from it.

POS Left Right
NNP NNP NNP COMMA NNS COMMA

COMMA COMMA COMMA
NNS NNS NNS JJ

JJ JJ JJ
COMMA COMMA COMMA

VBD VBD NNP VBD NN PP CD DOT
NN NN NN
PP PP PP NN
NN NN NN
CD CD CD

DOT DOT DOT
Table 2: Instances of left and right dependents extracted from the tree in Figure 3. The head
always starts the string of dependants. Left dependants should be read backwards.

In contrast, for the grammar GL we use trees like the one pictured in Figure 4. From
such trees, we extract two kinds of information. The first kind is used to model meta-
rules yielding GRs, i.e., the first level of the output trees, while the second is used to
model pseudo-rules that rewrite names of GRs into POS tags, i.e., the third level of the
output tree. Table 3 shows all instances to be added to the training material extracted
from the tree in Figure 1.

Probabilities of pseudo-rules in GD were hand coded, because there is a one to one
correspondence with left-hand symbols and the body of rules. For the present grammar,
this is no longer the case. Here, left hand symbols of pseudo-rules are GRs, and these
names can yield different POS tags. To estimate probabilities, we extracted all pairs of
(GR, POS) from the training material and put them aside in only one bag. Table 4 shows

VBD

Left Right
NP-SBJ VBD VBD NP-OBJ PP-CLR NP-TMP NO-FUNC

Table 3: Data extracted from the tree in Fig. 1. Left dependents should be read from right to left.

6

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

0.
0e

+0
0

5.
0e

-0
5

1.
0e

-0
4

1.
5e

-0
4

2.
0e

-0
4

2.
5e

-0
4

3.
0e

-0
4

3.
5e

-0
4

4.
0e

-0
4

4.
5e

-0
4

Alpha

VB - Right Side

MDI Perplex. (PP)
MDI Missed Samples (MS)

Norm(PP,MS)

 0
 10
 20
 30
 40
 50
 60
 70
 80

0.
0e

+0
0

5.
0e

-0
5

1.
0e

-0
4

1.
5e

-0
4

2.
0e

-0
4

2.
5e

-0
4

3.
0e

-0
4

3.
5e

-0
4

4.
0e

-0
4

4.
5e

-0
4

Alpha

VB - Right Side

MDI Perplex. (PP)
MDI Missed Samples (MS)

Norm(PP,MS)

Fig. 5: Left and right plots for automata used in GL and GD.

the instances of pairs extracted from the tree in Figure 1. The training material used for
building G is the union of the training material for GL and GD .

3.3 Defining Grammars

We start by building GD . Once the training material has been extracted, we build two
automata per POS tag, one modeling left dependents, the other right dependents. Let
POS be the set of possible POS tags, w an element in POS, and Aw

L and Aw
R the two

automata associated to it. Let Gw
L and Gw

R be the PCFGs equivalent to Aw
L and Aw

R,
respectively, following [8], and let Sw

L and Sw
R be the start symbols of Gw

L and Gw
R,

respectively. We build a grammar GD with start symbol S, by defining its meta-rules
as the disjoint union of all rules in Gw

L and Gw
R (for all POS w), its set of pseudo-rules

as the union of the sets {S s−→1 Sv
Lv∗Sv

R : v ∈ {VB, VBD, VBG, VBN, VBP, VBZ}}. The
grammar is designed in such a way that the start symbol S only yields the head words
of the sentences which are marked with the ∗ symbol. That is, all sentences that are
parsed using these grammars have one word marked with the ∗ symbol indicating that
the marked word is the head of the sentence.

For GL, automata are used to model sequences of GRs instead of POS tags. GRs
are at depth one (see Figure 4) and they are modeled with automata and meta-rules. The
yield of the tree is at depth two and it is modeled using pseudo-rules. The latter rewrite
GR names into a POS tag and they are read from the tree-bank; their probabilities
are computed using maximum likelihood estimation [9]. All meta-derivations that took
place to produce nodes at depth 1 remain hidden. Hence, the sequence of GRs to the
right and to the left of the main verb are instances of the regular languages modeling
right or left GRs, respectively.

GR NP-SBJ NP-OBJ PP-CLR NP-TMP NO-FUNC
POS tag nnp nn pp cd dot

Table 4: Pairs of GRs and POS tags extracted from tree in Figure 1.

7

Once the training material for meta-rules has been extracted, we build two automata
per GR, one modeling left sequences of GRs, the other right sequences of GRs. Let VS

be the set of possible verb tags, v an element in VS , and Av
L and Av

R the two automata
associated with it. Let Gv

L and Gv
R be the PCFGs equivalent to Av

L and Av
R, respectively,

and let Sv
L and Sv

R be the start symbols of Gv
L and Gv

R, respectively. We build a grammar
GL with start symbol S, by defining its meta-rules as the disjoint union of all rules in
Gv

L and Gv
R (for all verb POS tags v), and its set of pseudo-rules as the union of the two

sets. One set, given by {S s−→1 Sv
Lv∗Sv

R : v ∈ V S}, is connects automata modeling
left sequences of GRs with automata modeling right sequences of GRs. The second set,
given by {GR

s−→p w : w ∈ POS}, where GR is the name of a GR, w is a POS
tag, and p the probability associated to the rule, is computed using (GR, POS) pairs
extracted from the training material, using maximum likelihood estimation.

The automata we use for building G are the same as those used in the previous two
grammars, but the set of rules differs. Let POS be the set of possible POS tags, let w be
an element in POS; let Aw

L and Aw
R be the two automata built for each POS tag for the

grammar GD . Let VS be the set of possible verb tags, v an element in VS ; let Av
L and

Av
R the two automata we built for verb tags for grammar GL . Let Gv

L, Gv
R, Gw

L , and Gw
R

be the PCFGs equivalent to Av
L, Av

R, Aw
L and Aw

R, respectively, and let Sv
L, Sv

R, Sw
L and

Sw
R be the start symbols of Gv

L and Gv
R, respectively. We build a grammar G with start

symbol S, by defining its meta-rules as the disjoint union of all rules in Gv
L, Gv

R, Gv
L

and Gv
R, for all POS tags and all verbs tags, while its set of pseudo-rules is the union

of the following sets: {S s−→1 Sv
Lv∗Sv

R : v ∈ V S}, {W s−→1 Sw
L wSw

R : w ∈ POS},
and {GR

s−→p Sw
L wSw

R : w ∈ POS}, where p is the probability assigned to the rule
{GR

s−→p w : w ∈ POS} using maximun likelihood estimation.

3.4 Optimizing Automata

Let T be a bag of training material extracted from the transformed tree-bank. The nature
of T depends on the grammar we are trying to induce. Since we use the same technique
for optimizing all automata, we describe the procedure for a general bag. We use min-
imum discrimination information (MDI) [10] algorithm for inducing the automata, and
two different measure for evaluating them: perplexity (PP) and missed samples (MS).
A PP value close to 1 indicates that the automaton is almost certain about the next step
while reading the string. MS counts the number of strings in the test sample Q that the
automaton failed to accept.

The MDI algorithm has one parameter: alpha. We search for the value of alpha
that minimizes q =

√
PP 2 + MS2 (see [6] for motivation), where both PP and MS

depend on α. In Figure 5 we have plotted alpha vs. PP, MS and q for the VB tag used
in the grammars GL (left) and GD (right). Even though the PP values for automata
modeling sequences of GRs (left) and the PP values for automata modeling POS tags
(right) are close to each other, the difference between their MSs is remarkable. Data

8

sparseness seems to affect the modeling of GRs much more than that of POS tags; it
prevents the MDI algorithm from inducing a proper language for GRs.

4 Comparing Probability Distributions
The approach we follow to detect the value of sequences as features is to address the
task of detecting and labeling arguments using two different strategies. One is to cas-
cade the grammars GL and GD , while the second is to use G in one go. The first
approach uses the sequence of POS as a feature while the second one does not. Let
us take a closer look. We present the probabilities that each grammar assigns to its
tree language. Consider the trees shown in Figure 6. GD, GL, and G generate the

S

w1

t1

w2

t2

wh w3

t1

w4

t1

S

GR1

w1

GR2

w2

wh GR3

w3

GR4

w4

S

GR1

w1

t1

GR1

w2

t2

wh GR3

w3

t1

GR1

w4

t1
(a) (b) (c)

Fig. 6: (a) Example of a structure retrieved by the grammar GD , (b) An example of a structure
retrieved by the grammar GL, and (c) The result of cascading the grammars for detecting and
labeling dependents.

trees in Figure 6 (a), (b) and (c), respectively. The three grammars assigns probabili-
ties pGD

(t|s), pL(t|w1 . . . w4), and pG(t|s) as defined in Figure 7. There, p(whw1w2),

pGD
(t|s) = p(whw1w2)p(whw3w4)p(t1) . . . p(t4)

pGL
(t|w1 . . . w4) = p(whGR1GR2)p(whGR3GR4)p(GR1 → w1) . . . p(GR4 → w4)

pG(t|s)(t) = p(whGR1GR2)p(whGR3GR4)p(GR1 → w1) . . . p(GR4 → w4) ×

× p(t1) . . . p(t4)

pG(t|s) = pone-go(t)

Fig. 7: Probabilities pGD
(t|s), pGL

(t|w1 . . . w4), and pG(t|s) assigned by GD , GL and G, re-
spectively.

p(whw3w4), p(whGR1GR2) and p(whGR3GR4) are the probabilities assigned by the
automata to the strings whw1w2, whw3w4, whGR1GR2, and whGR3GR4, respec-
tively, and similarly for whGR1GR2) and whGR3GR4). Further, p(GRi

s−→ wi)

refers to the probability assigned to the rule GRi
s−→ wi and s is the concatenation of

yield(t1)yield(t2)whyield(t3)yield(t4).
If the grammar for labeling dependents is fed with the dependents found by the

grammar for detecting dependents, the probability associated to a tree like the one pic-

9

tured in Figure 6.(c) is as follows

pcascading(t|s) = pD(t) × pL(t) = (1)
= p(GR1 . . .GR4) ×

p(GR1

s−→ w1) . . . p(GR4

s−→ w4) ×
p(whw1w2)p(whw3w4)p(t1) . . . p(t4)

We can now establish the relation between the two probabilities behind the two strate-
gies we defined for solving the task. Let pcascading be the probability distribution gener-
ated over trees by cascading the two first grammars, and pone-go the probability distri-
bution generated by G. Both pone-go and pcascading assign probabilities to the same set of
trees, and the two are related as follows:

pcascading(t) = pone-go(t) × p(whw1w2)p(whw3w4). (2)

The difference between the two distributions is the probability of the sequence of POS
tags w1 . . . w4.

Summing up, we have two probability distributions for the very same task, one
uses an additional feature, namely, the sequence w1 . . . w4. An empirical comparison of
these two distributions will provide us with information about the value of the additional
feature; this is what we turn to in next.

5 Experiments
For our experiments we shuffle the PTB sections 10 to 19 into 10 different sets. We run
the experiments using set 1 as the test set and sets 2 to 10 as training sets. The tuning
samples were extracted from Section 00. All sentences fed to the parser have the main
head marked; all sentences whose main head was not tagged as a verb are filtered out.
First, we perform the whole task (detecting dependents and labeling their relation with
the main verb) according to the two strategies; results are shown in Table 5; we observe
a 10% difference in fβ=1 between the cascaded strategy and the “direct” strategy. This
helps us answer our main research question (What is the importance of the sequences of
POS tags for parsing?). Recall from Equation 2 that the only difference between pone-go

and pcascading is that pcascading associates to sequences of POS tags. In other words,
the 10% difference in performance between the two strategies is due to the use of this
information.

The grammar GL for labeling dependents allows us to quantify the effectiveness
of sequences of GRs together with pseudo-rules GR

s−→ w for labeling GRs. To this
end, we used grammar the GL for labeling dependents that are known to be the right

Approach Precision Recall fβ=1

Cascading 0.73 0.73 0.73
One Go 0.65 0.67 0.66

Table 5: The results on detecting and labeling main verbs dependents.

10

dependents. We extracted the correct sequences of dependents from the gold standard
and used the grammar GL for labeling them. Table 6 shows the results of this exper-
iment; the results show that labeling is not a trivial task. The scores obtained are low,
especially if we take into account that the sentences fed to the parser consisted only of
correct dependents. The poor performance of this grammar is due to the data sparseness
problem mentioned above: there is a large number of MS in the automata that model
GRs. Moreover, the two grammars in the cascaded approach allow us to quantify how
errors percolate from detecting dependents to labeling them. Now, the only aspect of the
task that is left is to study is the detection of dependents. In Table 6 we see how sensi-
tive the task of labeling dependents is to errors in its input: the labeling precision drops
from 0.76 to 0.73 when only the 85% of the arguments fed to the labeling grammar are
correct.

6 Related Work
The task of finding GRs has mostly been considered as a classification task [7]. A classi-
fier is trained to find relations and to decide the label of the relations found. The training
material consists of sequences of 3-tuples (main verb, label, and context). In contrast
to approaches based on classifiers, we view the task of finding GRs as a parsing task.
We build grammars that specifically try to find GRs. In order to give an impression of
state-of-the-art methods for finding and labeling main dependents, we compare exper-
iments to the approach presented in [7]. She reports 0.86 and 0.80 for precision and
recall respectively. Thesescores are better than ours, and the differences are probably
due to the restricted amount of information we used for performing the task. In contrast,
Buchholz [7] uses all kinds of features for detecting and labeling dependents.

7 Conclusions
The standard practice in parsing is to use all features that improve parsing performance
without clearly stating why they improve. In contrast, we designed grammars and exper-
iments for isolating and explaining two particular types of features: sequences of POS
tags and sequences of GRs, both for detecting and labeling and labeling dependents.

We designed and implemented experiments for exploring the differences in con-
tribution to the overall task of parsing between the regular language of POS tags and
the regular language of GRs. To assess the contribution of these two features, we car-
ried out an evaluation in terms of a task that clearly isolates the two regular languages.

Approach Precision Recall fβ=1

Labeling Gold Standard 0.76 0.76 0.76
Detecting Dependents 0.85 0.88 0.86

Table 6: Results of the experiment on labeling gold standard dependents and detecting depen-
dents.

11

We used the task of detecting and labeling dependents of the main verb of a sentence.
We presented two approaches for addressing this task. For the first, we developed two
grammars: one for detecting dependents and another for labeling them. The first gram-
mar used sequences of POS tags as the main feature for detecting dependents, and the
second grammar used sequences of GRs as the main feature for labeling the dependents
found by the first grammar. The overall task of detecting and labeling dependents was
done by cascading these two grammars. In the second approach, we built a single gram-
mar that uses sequences of GRs as the main feature for detecting dependents and for
labeling them; here, the overall task was done in one go by this grammar. The first ap-
proach used sequences of GRs and sequences of POS tags, while the second only used
sequences of GRs.

We showed that English GRs follow a very strict sequential order, but not as strict
as POS tags of verbal dependents. The latter are more effective for detecting and label-
ing dependents, and, hence, provide a more reliable instrument for detecting them. We
also showed that sequences of POS tags are fundamental for parsing performance: they
provide a reliable source for predicting and detecting dependents.

Acknowledgments. Maarten de Rijke was supported by the Netherlands Organization
for Scientific Research (NWO) under project numbers 017.001.190, 220-80-001, 264-
70-050, 354-20-005, 612-13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.-
006, and 640.001.501.

References

1. Collins, M.: Three generative, lexicalized models for statistical parsing. In: Proc. 35th ACL.
(1997)

2. Eisner, J.: Three new probabilistic models for dependency parsing: An exploration. In: Proc.
COLING 1996. (1996)

3. Infante-Lopez, G., de Rijke, M.: Alternative approaches for generating bodies of grammar
rules. In: Proc. 42nd ACL. (2004)

4. Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
University of Pennsylvania, PA. (1999)

5. Charniak, E.: Tree-bank Grammars. In: Proceedings AAAI’96, Portland, Oregon (1996)
6. Infante-Lopez, G.: Two-Level Probabilistic Grammars for Natural Language Parsing. PhD

thesis, Universiteit van Amsterdam (2005)
7. Buchholz, S.: Memory-Based Grammatical Relation Finding. PhD thesis, Universiteit van

Tilburg (2002)
8. Abney, S., McAllester, D., Pereira, F.: Relating probabilistic grammars and automata. In:

Proc. 37th ACL. (1999) 542–549
9. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. The MIT

Press, Cambridge, MA (1999)
10. Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using Kullback-

Leibler divergence and minimality. In: Proc. ICML, Stanford (2000)

12

