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Abstract

We extend the theory of labeled Markov processes

with internal nondeterminism, a fundamental concept

for the further development of a process theory with

abstraction on nondeterministic continuous probabilis-

tic systems. We define nondeterministic labeled Markov

processes (NLMP) and provide both a state based

bisimulation and an event based bisimulation. We show

the relation between them, including that the largest

state bisimulation is also an event bisimulation. We

also introduce a variation of the Hennessy-Milner

logic that characterizes event bisimulation and that is

sound w.r.t. the state base bisimulation for arbitrary

NLMP. This logic, however, is infinitary as it contains

a denumerable ∨. We then introduce a finitary sublogic

that characterize both state and event bisimulation for

image finite NLMP whose underlying measure space

is also analytic. Hence, in this setting, all notions of

bisimulation we deal with turn out to be equal.

1. Introduction

Markov processes with continuous-state spaces or

continuous time evolution (or both) arise naturally

in several fields of physics, biology, economics, and

computer science [11]. Many formal frameworks have

been defined to study them from a process theory or

process algebra perspective (see [4], [5], [7], [8], [11]–

[15], [26]). A prominent and extensive work on this

area is the one that builds on top of the so called

labeled Markov processes (LMP) [14], [15]. This is

due to its solid and well understood mathematical foun-

dations. A LMP allows for many transition probability

functions (or Markov kernels) leaving each state (in-

stead of only one as in usual Markov processes). Each
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transition probability function is a measure ranging

on a (possibly continuous) measurable space, and the

different transition probability functions can be singled

out through labels. Thus this model does not consider

internal non-determinism. From the process algebra

point of view, this is a significant drawback for this the-

ory since internal nondeterminism immediately arises

in the analysis of systems, e.g., because of abstracting

internal activity (such as weak bisimulation [22]) or

because of state abstraction techniques (such as in

model checking [10]).

Many other works defined variants of continu-

ous Markov processes that include internal non-

determinism and are mainly used as the underlying

semantics of a process algebra [4], [5], [12], [13], [26].

They also defined a continuous probabilistic variant

of the (strong) bisimulation. As correctly pointed out

by Cattani et al. [7], [8], these models lack enough

structure to ensure that bisimilar models share the

same observable behavior. (This is due to the case

in which two objects may be bisimilar but in one of

them it is not possible to define probabilistic executions

since the transition relation is not a measurable object.)

The solution proposed in [7], [8] deals with the same

unstructured type of models and lift the burden of

checking measurability to the semantic tools (such as

bisimulation or schedulers). In particular, this results in

the definition of a bisimulation as a relation between

measures rather than states.

A somewhat related observation has been made

in [11] with respect to the bisimulation relation on

LMPs [14], [15]. [11] shows that there are bisimulation

relations that may distinguish beyond events. That is,

states that cannot be separated (i.e., distinguished) by

any measurable set (i.e., an event) may not be related

for some bisimulation relation. This is also awkward

as events (measurable sets) are the building blocks of

observations (probabilistic executions). To overcome

this, [11] defines the so called event bisimulation (in



opposition to the previous state bisimulation—name

which we will use from now on). An event bisimu-

lation is a sub σ-algebra Λ on the set of states such

that the original transition probability functions is also

a Markov kernel on Λ, i.e., the original LMP is also

an LMP under Λ. Λ induces an equivalence relation

R(Λ) also called event bisimulation. Fortunately, it

turns out that the largest state bisimulation is also an

event bisimulation.

In this paper, we follow the LMP approach towards

defining a theory of LMP with internal nondeter-

minism. Thus, we introduce nondeterministic labeled

Markov processes (NLMP). A NLMP has a nondeter-

ministic transition function Ta for each label a that,

given a state, it returns a measurable set of probability

measures (rather than only one probability measure as

in LMPs). Moreover, Ta should be measurable. This

calls for a definition of a σ-algebra on top of Giry’s

σ-algebra on the set of probability measures [18],

which we also provide. We give a definition for event

bisimulation and state bisimulation and prove similar

properties to [11], including that the largest state

bisimulation is also an event bisimulation. We also

provide a definition of “traditional” bisimulation that

follows the lines of [4], [12], [13], [26]. We prove that a

traditional bisimulation is also a state bisimulation and

give sufficient conditions so that the converse holds.

Besides, we show that LMPs are just NLMPs without

internal nondeterminism and that state (resp. event)

bisimulation in the different models agree.

Behavioral equivalences like bisimulation have been

characterized using logic with modalities, notably the

Hennessy-Milner logic (see e.g. [19]). We define an

extension of the logic presented in the context of

LMP [14]. In fact, the logic is similar to that of [24],

which was introduced in a discrete setting. However,

unlike [24], we consider two different formula levels:

one that is interpreted on states, and the other that

is interpreted on measures. Such separation gives a

particular insight: the actual complexity of the model

lies exactly on the internal nondeterminism introduced

by the target of function Ta (which is a set of mea-

sures). At state level, the logic is as simple as in [14].

We show that this logic completely characterizes event

bisimulation and, as a consequence, it is sound w.r.t.

traditional and state bisimulation.

In addition, we show that a sublogic of the previous

logic characterizes all three bisimulations (event, state

and traditional) provided certain restrictions apply,

namely, NLMPs are image finite and the state space

is analytic. Therefore, all bisimulation equivalences as

well as logical equivalence turn out to be the same on

this setting.

2. Fundamentals and Background

In this section we review some foundational theory

and prove few basic results that will be of use through-

out the paper.

Measure theory. Given a set Ω and a collection F
of subsets of Ω, we call F a σ-algebra iff Ω ∈ F
and F is closed under complement and denumerable

union. By σ(H) we denote the σ-algebra generated

by the family H ⊆ 2Ω, i.e., the minimal σ-algebra
containing H. Each element of H is called generator

and H, the set of generators. We call the pair (Ω,F)
a measurable space. A measurable set is a set A ∈ F .

Let (Ωi,Fi), i = 1, 2, . . . , n be measurable spaces and

Ω = Ω1 × Ω2 × · · · × Ωn. A measurable rectangle in

Ω is a set A = A1 × A2 × · · · × An, where Ai ∈ Fi.
The product σ-algebra F1 ⊗ F2 ⊗ · · · ⊗ Fn is the

σ-algebra generated by measurable rectangles. A σ-
additive function µ : F → [0, 1] such that µ(Ω) = 1
is called probability measure. By δa we denote the

Dirac probability measure concentrated in {a}. Let

∆(Ω) denote the set of all probability measures over

the measurable space (Ω,F). A function f : Ω1,→ Ω2

is said to be measurable if ∀A2 ∈ F2, f
−1(A2) ∈ F1,

i.e., the inverse function maps measurable sets to

measurable sets.

A function f : Ω1 × F2 → [0, 1] is a transition

probability (also called Markov Kernel) if for all ω1 ∈
Ω1, f(ω1, ·) is a probability measure on (Ω2,F2) and

for all A2 ∈ F2, f(·, A2) is measurable.

There is a standard construction by Giry [18] to

endow ∆(Ω) with a σ-algebra as follows: ∆(F) is

defined as the σ-algebra generated by the sets of

probability measures ∆B(Q)
.
= {ν | ν(Q) ∈ B},

with Q ∈ F and B ∈ B([0, 1]). (B([0, 1]) is the

Borel σ-algebra on the interval [0, 1] generated by

the open sets.) When 0 ≤ p ≤ 1, we will write

∆≥p(Q), ∆>p(Q), ∆<p(Q), etc. for ∆B(Q) with

B = [p, 1], (p, 1], [0, p), etc. respectively. It is known

that the set {∆≥p(Q) | p ∈ (Q ∩ [0, 1]), Q ∈ F}
generates all ∆(F).

On this setting, f : Ω1 ×F2 → [0, 1] is a transition

probability if and only if its curried version f : Ω1 →
∆(Ω2) is measurable. (Mind the notation overloading

on f .) This follows from the next lemma.

Lemma 1: f : Ω1 → ∆(Ω2) is measurable iff

f(·, Q) : Ω1 → [0, 1] is measurable for all Q ∈ F2.

Proof: It is routine to calculate that

f−1(∆B(Q)) = (f(·, Q))−1(B) for all Q ∈ F2 and

B ∈ B([0, 1]). By this observation, f−1(∆B(Q)) ∈ F1

iff (f(·, Q))−1(B) ∈ F1. Since it is sufficient to show

that f−1(∆B(Q)) ∈ F1 for all generators ∆B(Q) to

state that f is measurable [1], the lemma follows.



An important result on Giry’s construction is that

the σ-algebra of measures is separative [6], i.e., for

any two elements, there is always a measurable set that

contains one element but not the other.

Proposition 1: ∆(Σ) is separative. That is, given

different µ, µ′ ∈ ∆(S), there exists Θ ∈ ∆(Σ) such

that µ ∈ Θ and µ′ /∈ Θ.

Relations, Measures, and σ-algebras. Given a

relation R ⊆ S × S, the predicate R-closed(Q)
denotes R(Q) ⊆ Q. Notice that if R is symmetric,

R-closed(Q) if and only if ∀s, t : sRt : s ∈ Q ⇔ t ∈
Q. Let (S,Σ) be a measurable space. For symmetric

R, define Σ(R)
.
= {Q ∈ Σ | R-closed(Q)}. Σ(R)

is the sub-σ-algebra of Σ containing all R-closed
Σ-measurable sets. The next proposition states that

the inclusion order between two relations transfers

inversely to the σ-algebras induced by them and to

Giry’s construction applied to these σ-algebras.

Proposition 2: Let R and R′ be symmetric relations

such that R ⊆ R′. Then (i) Σ(R) ⊇ Σ(R′) and

(ii) ∆(Σ(R)) ⊇ ∆(Σ(R′)).

Proof: (i) follows from the fact that any measur-

able set that is R′-closed is also R-closed whenever

R ⊆ R′. For (ii), recall that ∆(Σ(R′)) is generated

by G = {∆B(Q) | Q ∈ Σ(R′) and B ∈ B([0, 1])}.
Since Σ(R′) ⊆ Σ(R) (by (i)), then G ⊆ ∆(Σ(R))
from which the lemma follows.

We can lift R to an equivalence relation in ∆(S) as
follows: µRµ′ iff ∀Q ∈ Σ(R) : µ(Q) = µ′(Q). Then,
the predicate R-closed can be defined on subsets of

∆(S) just like before. The following proposition will

be useful.

Proposition 3: If R is a symmetric relation, every

∆(Σ(R))-measurable set is R-closed.

Proof: Let Q ∈ Σ(R) and B ∈ B([0, 1]). Then,
if µ ∈ ∆B(Q) and µRµ′, µ′ ∈ ∆B(Q). So, each

generator ∆B(Q) of ∆(Σ(R)) is R-closed. Moreover,

for any symmetric R, the property of being R-closed
is preserved by denumerable union and complement.

Since the lifted R is symmetric, we can conclude that

every ∆(Σ(R))-measurable set is R-closed.

A σ-algebra Σ defines an equivalence relation R(Σ)
on S as follows: sR(Σ)t iff ∀Q ∈ Σ, s ∈ Q⇔ t ∈ Q.

That is, two elements are related if they cannot be sep-

arated by any measurable set. The following properties

(due to [11]) appear here for the sake of completeness;

they relate σ-algebras and relations. In particular, (v)

is a consequence of (i) and (ii).

Proposition 4: Let (S,Σ) be a measurable space, R
a symmetric relation on S, and Λ ⊆ Σ a sub-σ-algebra
of Σ. Then, (i) Λ ⊆ Σ(R(Λ)); (ii) R ⊆ R(Σ(R));
(iii) if each R-equivalence class is in Σ, then R =

R(Σ(R)); (iv) R(Λ) = R(Σ(R(Λ))); and (v) Σ(R) =
Σ(R(Σ(R)))1.

Labeled Markov Processes. A labeled Markov pro-

cess (LMP) [14], [15] is a triple (S,Σ, {τa | a ∈ L})
where Σ is a σ-algebra on the set of states S, and for

each label a ∈ L, τa : S × Σ → [0, 1] is a transition

probability. By Lemma 1, we can say that (S,Σ, {τa |
a ∈ L}) is an LMP if every τa : S → ∆(S) is

measurable.

In [14], [15], a notion of behavioral equivalence

similar to Larsen-Skou probabilistic bisimulation [21]

is introduced.

Definition 1: R ⊆ S × S is a state bisimulation on

LMP (S,Σ, {τa | a ∈ L}) if it is symmetric2 and for

all s, t ∈ S, a ∈ L, sRt implies that τa(s)Rτa(t).
This definition is pointwise and not “eventwise”

as one should expect in a measure-theoretic realm,

besides R has no measurability restriction. In [11] a

measure-theoretic aware notion of behavioral equiva-

lence is introduced.

Definition 2: An event bisimulation on a LMP

(S,Σ, {τa | a ∈ L}) is a sub-σ-algebra Λ of Σ s.t.

(S,Λ, {τa | a ∈ L}) is a LMP.

[11] shows that R is state bisimulation iff Σ(R) is

an event bisimulation. This is an important result that

leads to prove that the largest state bisimulation is also

an event bisimulation (see Theorem 5 below).

3. Nondeterministic Labeled Markov Pro-

cesses

In this section we extend the LMP model adding in-

ternal nondeterminism. That is, we allow that different

but equally labeled transition probabilities leave out the

same state. We provide event and state bisimulations

for this model, show the relation to LMPs and the

relation to earlier definitions of bisimulation on non-

deterministic and continuous probabilistic transition

systems.

The model. There have been several attempts to

define nondeterministic continuous probabilistic tran-

sition systems and all of them are straightforward

extensions of (simpler) discrete versions. There are two

fundamental differences in our new model. The first

one is that the nondeterministic transition function Ta
now maps states to measurable sets of probability mea-

sures rather than arbitrary sets as previous approaches.

1. Prop. 4(v) appears in [11] unnecessarily requiring that R is a
state bisimulation.

2. The requirement of symmetry is needed otherwise Σ(R) may
not be a σ-algebra



This is motivated by the fact that later on the nonde-

terminism has to be resolved using schedulers. If we

allowed the target set of states to be an arbitrary subset,

(as some continuous ones [5], [8], [12]), the system

as a whole could suffer from non-measurability issues

and therefore it could not be quantified. (Rigorously

speaking, labels should also be provided with a σ-
algebra, but we omit it here since it is not needed.)

The second difference is inspired by the definition of

LMP and Lemma 1 (see also the alternative definition

of LMP above): we ask that, for each label a ∈ L, Ta
is a measurable function. One of the reasons for this

restriction is to have well defined modal operators of a

probabilistic Hennessy-Milner logic, like in the LMP

case.

Definition 3: A nondeterministic labeled Markov

process (NLMP for short) is a structure (S,Σ, {Ta |
a ∈ L}) where Σ is a σ-algebra on the set of states

S, and for each label a ∈ L, Ta : S → ∆(Σ) is

measurable.

For the requirement that Ta is measurable, we need

to endow ∆(Σ) with a σ-algebra. This is a key

construction to forthcoming definitions and theorems.

Definition 4: H(∆(Σ)) is the minimal σ-algebra
containing all sets Hξ

.
= {Θ ∈ ∆(Σ) | Θ ∩ ξ 6= ∅}

with ξ ∈ ∆(Σ).
This construction is similar to that of the Effros-

Borel spaces [20] and resembles the so-called hit-and-

miss topologies [23]. Note that the generator set Hξ

contains all measurable sets that “hit” the measurable

set ξ. Also observe that T−1
a (Hξ) is the set of all

states s such that, through label a, “hit” the set of

measures ξ (i.e., Ta(s) ∩ ξ 6= ∅). This forms the basis

to existentially quantify over the nondeterminism, and

it is fundamental for the behavioral equivalence and

the logic.

The next two examples (inspired by an example

in [7]) show why Ta is required to map into measurable

sets and to be measurable. For these examples we fix

the state space and σ-algebra in the real unit interval

with the standard Borel σ-algebra.
Example 1: Let V = {δq | q ∈ V }, where V is the

non-measurable Vitali set in [0, 1]. It can be shown that

V is not measurable in ∆(Σ). Let Ta(s) = V for all s ∈
[0, 1]. The resolution of the internal non-determinism

by means of so called schedulers (also adversaries or

policies) [25], [27], whatever its definition is, would

require to assign probabilities to all possible choices.

This amounts to measure the nonmeasurable set Ta(s).
This is why we require that Ta maps into measurable

sets.

Example 2: Let Ta(s) = {µ} for a fixed measure

µ, and let Tb(s) = if (s ∈ V ) then {δ1} else ∅, for

every s ∈ [0, 1], with V being a Vitali set. Notice that

both Ta(s) and Tb(s) are measurable sets for every

s ∈ [0, 1]. Supposing that there is a scheduler that

chooses to first do a and then b starting at some state

s, the probability of such set of executions cannot

be measured, as it requires to apply µ to the set

T−1
b (H∆(S)) = V which is not measurable. Besides,

we will later need that sets T−1
a (Hξ) are measurable

so that the semantics of the logic maps into measurable

sets (see Sec. 4).

NLMPs as a generalization of LMPs. Notice that

a LMP is a NLMP without internal nondeterminism.

That is, a NLMP in which Ta(s) is a singleton for all

a ∈ L and s ∈ S, is a LMP. In fact, a LMP can be

encoded as a NLMP by taking Ta(s) = {τa(s)}. (We

formally prove this in Prop. 5.) As a consequence it is

necessary that singletons {µ} are measurable in ∆(Σ)
for the NLMP to be well defined. The following lemma

gives sufficient conditions to ensure that all singletons

are measurable in ∆(Σ).
Lemma 2: Let G be a denumerable π-system on

S (i.e., a denumerable subset of 2S containing S
and closed under finite intersection). Then, for all

µ ∈ ∆(S), {µ} ∈ ∆(σ(G)).
Proof: It is sufficient to prove that the set

∩{∆>qi(Qi) | Qi ∈ G, qi ∈ Q ∩ [0, 1], qi < µ(Qi)}∩

∩{∆<qi(Qi) | Qi ∈ G, qi ∈ Q ∩ [0, 1], µ(Qi) < qi},

which is a denumerable intersection, is equal to the

singleton {µ}. By construction µ is in the intersection.

Take µ′ s.t. µ 6= µ′. By a classical theorem of extension

of a measure [2, Theorem 3.3], there must be a Qi ∈ G
such that µ(Qi) 6= µ′(Qi). If µ(Qi) > µ′(Qi) then µ′

does not belong to the first intersection; if µ(Qi) <
µ′(Qi), µ

′ does not belong to the second one.

In other words, we can guarantee that singletons are

measurable in Giry’s construction if the underlying σ-
algebra is countably generated. Note that Lemma 2

gives also sufficient conditions to define NLMPs with

finite and denumerable nondeterminism.

Notice also that asking for measurable singletons in

∆(Σ) does not trivialize Σ (in the sense that Σ =
2S). A nontrivial example in which Lemma 2 holds

is the standard Borel σ-algebra in R. A less obvious

example is as follows. Let the σ-algebra Q-coQ
.
=

2Q ∪ {R \ Q | Q ∈ 2Q}. Notice that Q-coQ cannot

separate one irrational from another (let alone asking

for all singletons being measurable). Nevertheless, as it

is generated by the denumerable π-system {{q} | q ∈
Q} ∪ {∅}, it is under the conditions of Lemma 2 and

hence for every measure µ on it, {µ} is measurable on

∆(Q-coQ).



The formal connection between NLMP and LMP is

an immediate consequence of the next proposition.

Proposition 5: Let Ta(s) = {τa(s)} for all s ∈ S
and let Σ be a σ-algebra on S. Then τa : S → ∆(S)
is measurable iff Ta : S → ∆(Σ) is measurable.

Proof: Let ξ ∈ ∆(Σ). Note that Ta(s) ∈ Hξ iff

{τa(s)} ∩ ξ 6= ∅ iff τa(s) ∈ ξ. Then T−1
a (Hξ) =

τ−1
a (ξ). Therefore τa is measurable whenever Ta is

measurable. For the converse, we have that T−1
a (Hξ)

is measurable for all generators Hξ . As a consequence

Ta is measurable in general [1].

The bisimulations. Event bisimulation in NLMP is

defined exactly in the same way as for LMP: an event

bisimulation is a sub-σ-algebra that, together with the

same set of states and transition of the original NLMP,

makes a new NLMP.

Definition 5: An event bisimulation on a NLMP

(S,Σ, {Ta | a ∈ L}) is a sub-σ-algebra Λ of Σ s.t.

(S,Λ, {Ta | a ∈ L}) is a NLMP, that is, Ta is Λ-
measurable for each a ∈ L.
We extend the notion of event bisimulation to relations.

We say that a relation R is an event bisimulation if

there is an event bisimulation Λ s.t. R = R(Λ). We

remark that, by Prop. 5, an event bisimulation on a

LMP is also an event bisimulation on the encoding

NLMP and vice-versa.

The definition of state bisimulation is less standard.

Following the original definition of Milner [22] (which

was lifted to discrete probabilistic models by Larsen

and Skou [21]), a traditional definition of bisimulation

(see Def. 7) verifies that, whenever sRt, every measure

on Ta(s) has a corresponding one (moduloR) in Ta(t).
Rather than looking pointwise at probability measures,

our definition follows the idea of Def. 4 and verifies

that both Ta(s) and Ta(t) hit the same measurable sets

of measures.

Definition 6: A relation R ⊆ S×S is a state bisim-

ulation if it is symmetric and for all a ∈ L, sRt implies

∀ξ ∈ ∆(Σ(R)) : Ta(s) ∩ ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅.
The following property, which also holds in LMPs,

states the fundamental relation between state bisimu-

lation and event bisimulation.

Lemma 3: Provided R is symmetric, R is a state

bisimulation iff Σ(R) is an event bisimulation.

Proof: By Def. 5, Σ(R) is an event bisimulation

iff Ta is Σ(R)-measurable. Since Ta is Σ-measurable,

it suffices to prove that T−1
a (Hξ) is R-closed for all

labels a ∈ L and generators Hξ , ξ ∈ ∆(Σ(R)).

R-closed(T−1
a (Hξ))

iff (R is symmetric)

sRt⇒
(

s ∈ T−1
a (Hξ) ⇔ t ∈ T−1

a (Hξ)
)

iff (Def. inverse function)

sRt⇒ (Ta(s) ∈ Hξ ⇔ Ta(t) ∈ Hξ)

iff (Def. of Hξ)

sRt⇒ (Ta(s) ∩ ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅) .

The last statement is the definition of state

bisimulation.

The following results are consequences of Prop. 4

and, for the case of Lemma 4.3, Lemma 3 and the

fact that R(Λ) is an equivalence relation. The proofs

are the same as the proofs of similar results for LMP

in [11].

Lemma 4: Let R be a state bisimulation. Then:

1) R is an event bisimulation iff R = R(Σ(R)).
2) If the equivalence classes of R are in Σ, R is an

event bisimulation.

3) R(Σ(R)) is both a state bisimulation and an event

bisimulation.

Let ∼ =
⋃

{R | R is a state bisimulation}. In the

following we show that ∼ is also a state bisimulation

and hence the largest one. Moreover, we show that ∼
is also an event bisimulation and, as a consequence,

an equivalence relation.

Theorem 5: ∼ is (i) the largest state bisimulation,

(ii) an event bisimulation, and (iii) an equivalence

relation.

Proof: (i) Take s, t ∈ S s.t. s ∼ t. Then there is a

state bisimulation R with sRt. Take a measurable set

ξ ∈ ∆(Σ(∼)). Since R ⊆∼, by Prop. 2, ∆(Σ(R)) ⊇
∆(Σ(∼)). Hence ξ ∈ ∆(Σ(R)) and by Def. 6, Ta(s)∩
ξ 6= ∅ ⇔ Ta(t) ∩ ξ 6= ∅ which prove that ∼ is a state

bisimulation. By definition, it is the largest one.

(ii) Because ∼ is a state bisimulation, R(Σ(∼))
is a state bisimulation and an event bisimulation

(Lemma 4.3). Since ∼ is the largest bisimulation then

∼= R(Σ(∼)) and hence it is an event bisimulation.

(iii) By definition, every event bisimulation is an

equivalence relation.

A traditional view to bisimulation. We have already

stated that our definition of state bisimulation differs

from a more traditional view such as those in [4],

[5], [12], [13], [26]. These definitions closely resemble

Larsen & Skou’s definition [21]. (The only difference

is that two measures are considered equivalent if they

agree in every measurable union of equivalence classes

induced by the relation.) In the following, we give a

more “modern” variant of this definition.

Definition 7: A relation R is a traditional bisimula-

tion if it is symmetric and for all a ∈ L, sRt implies

Ta(s) R Ta(t).
Note that R is lifted this time to sets as is usual:

Ta(s) R Ta(t) if for all µ ∈ Ta(s), there is µ
′ ∈ Ta(t)



s.t. µRµ′ and vice-versa. (Had we explicitly written

this definition on Def. 7, it would have resembled

traditional definitions.)

In the following we discuss the relation be-

tween state bisimulation and traditional bisimulation.

Lemma 6 states that every traditional bisimulation is

a state bisimulation. Theorems 7 and 8 give sufficient

conditions to strengthen Lemma 6 so that the converse

also holds.

Lemma 6: If R is a traditional bisimulation, then R
is a state bisimulation.

Proof: Let sRt and ξ ∈ ∆(Σ(R)). If Ta(s)∩ ξ 6=
∅, then there is µ ∈ Ta(s) s.t. µ ∈ ξ. Since R is

a traditional bisimulation, Ta(s) R Ta(t), i.e., there
is µ′ ∈ Ta(t) s.t. µRµ′. By Prop. 3 R-closed(ξ), so
µ′ ∈ ξ, and hence Ta(t)∩ξ 6= ∅ as required. The other

implication follows by symmetry.

In the following we give two sufficient conditions

so that a state bisimulation is also a traditional bisim-

ulation. The first condition focuses on the NLMP. It

requires the NLMP to be image denumerable.

Definition 8: A NLMP (S,Σ, {Ta | a ∈ L}) is

image denumerable iff for all a ∈ L, s ∈ S, Ta(s)
is denumerable.

Theorem 7: Let (S,Σ, {Ta | a ∈ L}) be an image

denumerable NLMP. Then R is a traditional bisimula-

tion iff it is a state bisimulation.

Proof: The left-to-right implication is Lemma 6.

For the other implication we proceed as follows.

Let sRt and for all ξ ∈ ∆(Σ(R)), Ta(s) ∩ ξ 6=
∅ ⇔ Ta(t) ∩ ξ 6= ∅. Suppose towards a contradiction

that Ta(s) 6R Ta(t), i.e. ∃µ ∈ Ta(s), ∀µ′
i ∈ Ta(t) :

∃Qi ∈ Σ(R) : µ(Qi) ⊲⊳i µ
′
i(Qi), where ⊲⊳i ∈ {>

,<} and i ∈ N (the NLMP is image denumerable).

By density of the rationals, there are {qi}i ⊆ Q ∩
[0, 1] such that µ(Qi) ⊲⊳i qi ⊲⊳i µ

′
i(Qi). Then µ ∈

∆⊲⊳iqi(Qi) 6∋ µ′
i. Let ξ

.
= ∩i∆⊲⊳iqi(Qi). This set is

measurable, moreover, since every Qi ∈ Σ(R), so ξ ∈
∆(Σ(R)). Then µ ∈ Ta(s)∩ξ, but Ta(t)∩ξ = ∅ hence

contradicting the assumption.

After reading the proof, it should be clear that we

can relax the sufficient condition to require that the

partition Ta(s)/R is denumerable for each state s and

label a instead of image denumerability.

Observe that a state bisimulation on a LMP is a

traditional bisimulation on the encoding NLMP and

vice-versa since {τa(s)} = Ta(s) R Ta(t) = {τa(t)}
iff τa(s) R τa(t). As a consequence of Lemma 6 and

Theorem 7 (a deterministic NLMP is image denumer-

able!), we conclude that a state bisimulation on a LMP

is a state bisimulation on the encoding NLMP and vice-

versa.

The second sufficient condition looks at the σ-
algebra Σ(R) induced by the state bisimulation R. It
turns out that if Σ(R) is generated by a denumerable

π-system, R is also a traditional bisimulation.

Theorem 8: Let R be a symmetric relation such that

Σ(R) is generated by a denumerable set G. Then R is

a traditional bisimulation iff it is a state bisimulation.

Proof: As before, the left-to-right implication is

Lemma 6. For the other implication we proceed as

follows. Suppose towards a contradiction that sRt and
Ta(s) 6R Ta(t), i.e. ∃µ ∈ Ta(s), ∀µ′ ∈ Ta(t) : µ 6R µ′.

By [2, Theorem 3.3], this implies that there exists

Qi ∈ π(G) s.t. µ(Qi) 6= µ′(Qi) with i ∈ N.

(Notice that π(G), the π-system generated by G, is
also denumerable and generates Σ(R).) The rest of

the proof is as in Theorem 7.

4. A Logic for Bisimulation on NLMP

The logic we present below is based on the logic

given by Parma and Segala [24]. The main difference

is that we consider two kind of formulas: one that is

interpreted on states, and another that is interpreted on

measures. The syntax is as follows,

φ ≡ ⊤ | φ1 ∧ φ2 | 〈a〉ψ

ψ ≡
∨

i ψi | ¬ψ | [φ]≥q

where a ∈ L and q ∈ Q ∩ [0, 1]. We denote by L the

set of all formulas generated by the first production

and by L∆ the set of all formulas generated by the

second production.

Semantics is defined with respect to a NLMP

(S,Σ, T ). Formulas in L are interpreted as sets of

states in which they become true, and formulas in L∆

are interpreted as sets of measures on states as follows,

J⊤K = S J
∨

i ψiK =
⋃

iJψiK

Jφ1 ∧ φ2K = Jφ1K ∩ Jφ2K J¬ψK = JψKc

J〈a〉ψK = T−1
a (HJψK) J[φ]≥qK = ∆≥q(JφK)

In particular, notice that 〈a〉ψ is valid in a state s
whenever there is some measure µ ∈ Ta(s) that

makes ψ valid, and that [φ]≥q is valid in a measure

µ whenever µ(JφK) ≥ q. As a consequence, we need

that sets JφK and JψK are measurable in Σ and ∆(Σ),
respectively. Indeed, this follows straightforwardly by

induction on the construction of the formula after ob-

serving that all operations involved in the definition of

the semantics preserve measurability (in particular Ta
is a measurable function). For the rest of the section, fix

JLK = {JφK | φ ∈ L} and JL∆K = {JψK | ψ ∈ L∆}.
We particularly notice that some other operators can

be encoded as syntactic sugar. For instance, we can



define [φ]>r ≡
∨

q∈Q∩[0,1]∧q>r[φ]≥q for any real

r ∈ [0, 1], and [φ]≤r ≡ ¬[φ]>r.
We show that L characterizes event bisimulation.

This is an immediate consequence of the fact that

σ(JLK), the σ-algebra generated by the logic L, is the
smallest event bisimulation, which is what we aim to

prove in this part of the section. The proof strategy

resembles that of [11, Sec. 5] but it is properly tailored

to our two level logic. Moreover, such a separation

allowed us to find an alternative to Dynkin’s theorem

(used in [11]).

We extend the definition of ∆(C) to any arbitrary set

C ⊆ Σ by taking ∆(C) to be the σ-algebra generated

by ∆≥p(Q)
.
= {ν | ν(Q) ≥ p}, with Q ∈ C and p ∈

[0, 1]. From now on we write σ(L), ∆(L) and R(L)
instead of σ(JLK), ∆(JLK) and R(JLK), respectively.
The concept of stable family of measurable sets is

crucial to the proof of Theorem 13.

Definition 9: Given a NLMP (S,Σ, T ), the family

C ⊆ Σ is stable for (S,Σ, T ) if for all a ∈ L and

ξ ∈ ∆(C), T−1
a (Hξ) ∈ C.

Notice that C is an event bisimulation iff it is a stable

σ-algebra.
The key point of the proof is to show that JLK is the

smallest stable π-system, which is stated in Lemma 10.

The next lemma is auxiliary to Lemma 10.

Lemma 9: JL∆K = ∆(L)
Proof: JL∆K is a σ-algebra since: (i) ∆(S) =

J[⊤]≥1K ∈ JL∆K; (ii) for ξi ∈ JL∆K there are ψi ∈ L∆

s.t. ξi = JψiK, and hence
⋃

i ξi =
⋃

iJψiK = J
∨

i ψiK ∈
JL∆K; and (iii) for ξ ∈ JL∆K there is ψ ∈ L∆ s.t.

ξ = JψK, and hence ξc = JψKc = J¬ψK ∈ JL∆K.
Moreover, since J[φ]≥pK = ∆≥p(JφK), every generator

set of ∆(L) is in JL∆K and hence ∆(L) ⊆ JL∆K.
Finally, it can be proven by induction on the depth

of the formula that JL∆K ⊆ C for any σ-algebra C con-

taining all sets J[φ]≥pK = ∆≥p(JφK) for p ∈ [0, 1] and
φ ∈ L. Then JL∆K is the smallest σ-algebra containing
all generator sets of ∆(L). Therefore JL∆K = ∆(L).

Lemma 10: JLK is the smallest stable π-system for

(S,Σ, T ).
Proof: JLK is a π-system since: (i) S = J⊤K ∈ JLK

and (ii) for Q1, Q2 ∈ JLK there are φ1, φ2 ∈ L s.t.

Q1 = Jφ1K and Q2 = Jφ2K, and hence Q1 ∩ Q2 =
Jφ1K ∩ Jφ2K = Jφ1 ∩ φ2K ∈ JLK.
For stability, let ξ ∈ ∆(L). By Lemma 9, there is

ψ ∈ L∆ s.t. JψK = ξ. Then T−1
a (Hξ) = T−1

a (HJψK) =
J〈a〉ψK ∈ JLK.
Let C be another stable π-system for (S,Σ, T ). By

induction in the depth of the formula we show simul-

taneously that C ⊇ JLK and ∆(C) ⊇ ∆(L). First notice
that J⊤K = S ∈ C since C is a π-system. Now, suppose

inductively that JφK, Jφ1K, Jφ2K ∈ C and JψK, JψiK ∈
∆(C) for i ≥ 0. Then: (i) Jφ1∧φ2K = Jφ1K∩Jφ2K ∈ C,
because C is a π-system; (ii) J〈a〉ψK = T−1

a (HJψK) ∈
C, because C is stable; (iii) J

∨

i ψiK =
⋃

iJψiK ∈ ∆(C)
and (iv) J¬ψK = JψKc ∈ ∆(C) because ∆(C) is a σ-
algebra; and finally, (v) J[φ]≥pK = ∆≥p(JφK) ∈ ∆(C)
by definition of generator set of ∆(C).

Lemma 11 is auxiliary to Lemma 12. It is also

significantly simpler than its relative in [11, Lemma

5.4]. This is due to our definition of stability and the

use of a powerful result of [28].

Lemma 11: If C is a stable π-system for (S,Σ, T ),
then σ(C) is also stable.

Proof: First notice that C is stable iff {T−1
a (Hξ) |

a ∈ L, ξ ∈ ∆(C)} ⊆ C. By [28, Lemma 3.6], ∆(C) =
∆(σ(C)). Then {T−1

a (Hξ) | a ∈ L, ξ ∈ ∆(σ(C))} ⊆
C ⊆ σ(C), which proves that σ(C) is stable.

The next lemma is central to the proof that L char-

acterizes event bisimulation, which is then presented

in Theorem 13.

Lemma 12: σ(L) is the smallest stable σ-algebra
included in Σ.

Proof: Let F be the smallest stable σ-algebra
included in Σ. By Lemma 10, JLK ⊆ F , since F is a

stable π-system. Therefore σ(L) ⊆ F since F is also a

σ-algebra. For the other inclusion, notice that JLK is a

stable π-system because of Lemma 10. By Lemma 11,

σ(L) is stable, therefore it contains F .

Theorem 13: The logic L completely characterizes

event bisimulation.

Proof: Lemma 12 establishes that σ(L) is stable,

i.e. it is an event bisimulation. Being the smallest, it

implies that any other event bisimulation preserves L
formulas.

A consequence of this and Theorem 5 is that state

bisimulation is sound for L, i.e., it preserves the

validity of formulas. This is stated in Theorem 15. We

first introduce an auxiliary lemma.

Lemma 14: R(C) = R(σ(C)).
Proof: We only need to show that R(C) ⊆

R(σ(C)) since the other inclusion is obvious. Let

s R(C) t. Notice that σ(C) = {Q ∈ σ(C) |
s ∈ Q⇔ t ∈ Q}. (It is easy to see that this set is

closed by complement and denumerable union and

contains C.) From this and definition of R(σ(C)),
s R(σ(C)) t follows.

Theorem 15: ∼ ⊆ R(L).
Proof: By Theorem 5, Σ(∼) is an event bisimula-

tion and hence a stable σ-algebra. Then σ(L) ⊆ Σ(∼)
by Lemma 12. Therefore, using Lemma 14, R(L) =
R(σ(L)) ⊇ R(Σ(∼)) =∼.

Completeness on image finite NLMPs. The rest of

the section is devoted to show that the logic completely



characterizes (all three) bisimulation on NLMPs with

image finite nondeterminism and standing on analytic

spaces. In fact, we show completeness of the sublogic

of L defined by:

φ ≡ ⊤ | φ1 ∧ φ2 | 〈a〉[ ⊲⊳iqi
φi]

n
i=1

where ⊲⊳i ∈ {>,<} and qi ∈ Q ∩ [0, 1]. We de-

fine the new modal operation as a shorthand nota-

tion: 〈a〉[ ⊲⊳iqi
φi]

n
i=1 ≡ 〈a〉

∧n

i=1[φ]⊲⊳iqi
. Therefore,

J〈a〉[ ⊲⊳iqi
φi]

n
i=1K = T−1

a (H∩n
i=1

∆⊲⊳iqi (JφiK)). Let Lf ⊆
L denote the set of all formulas defined with the

grammar above. Notice that Lf is a denumerable set

whenever the set of labels L is denumerable.

The expression 〈a〉[ ⊲⊳iqi
φi]

n
i=1 is like a conjunction

of formulas 〈a〉⊲⊳iqi
φi, but the probabilistic bounds

must be satisfied by the same nondeterministic transi-

tion. Modality 〈a〉⊲⊳qφ suffices to characterize bisimu-

lation on LMP [15] but, as we see in the next example,

it is not enough for the more general setting of NLMPs.

Example 3: Take the discrete NLMPs depicted be-

low. States s and t are not bisimilar since given a

µ ∈ Ta(s), there is no µ′ ∈ Ta(t) such that µ(Q) =
µ′(Q) for all Q ∈ {{x}, {y}, {z}} (which are the

only relevant possible R-closed sets). A logic having

a modality that can only describe one behavior after a

label will not be able to distinguish between s and t.
For example, J〈a〉>qφK = {w | Ta(w) ∩ ∆>q(JφK) 6=
∅} will always have s and t together. Observe that

negation, denumerable conjunction or disjunction, do

not add any distinguishing power (on an image finite

setting).

s

a

a

a ta

a

a

µ1
µ2 µ′

0 µ′
1

µ0 xb y
c

z d µ′
2

µ0 µ1 µ2 µ′
0 µ′

1 µ′
2

{x} 1
3

2
3 0 2

3
1
3 0

{y} 0 1
3

2
3 0 2

3
1
3

{z} 2
3 0 1

3
1
3 0 2

3

The essential need for this new modal operator also

shows that our σ-algebra H(∆(Σ)) in Def. 4 can not

be simplified to σ({H∆B(Q) : B ∈ B([0, 1]), Q ∈ Σ}).
States s and t in the example above should be ob-

servationally distinguished from each other. Formally,

this amounts to say that there must be some label a
and some measurable Θ such that T−1

a (Θ) separates

{s} from {t}. Therefore, the same must be true for

some generator Θ, but this does not hold for the family

{H∆B(Q) : B ∈ B([0, 1]), Q ∈ Σ}.
Logical characterization of bisimulation is suc-

cinctly stated as s ∼ t ⇔ s R(Lf ) t. The left-to-

right implication is immediate by Theorem 15. For the

converse, we restrict the state space and the branching.

The strategy is to prove that R(Lf ) is a traditional

bisimulation, that is, s R(Lf) t implies that ∀µ ∈
Ta(s), ∃µ′ ∈ Ta(t), µ R(Lf) µ′; recall this means

µ(Q) = µ′(Q) for all Q ∈ Σ(R(Lf)). For analytic

spaces this holds if it is valid for the restricted set of

Q ∈ Σ(R(Lf )) such that Q = JφK, for some φ ∈ Lf .

We first introduce analytic spaces and a result from

descriptive set theory that is fundamental for the proof.

Definition 10: A topological space is Polish if it is

separable (i.e. it contains a countable dense subset) and

completely metrizable. A topological space is analytic

if it is the continuous image of a Polish space. A

measurable space is analytic (standard) Borel if it

is isomorphic to (X,σ(T )) where T is an analytic

(Polish) topology on X .

Every standard Borel space is analytic, but the

converse is false. The real line with the usual Borel

σ-algebra, and more generally, AN with A a count-

able discrete space, are standard Borel and therefore,

analytic.

The next theorem from [16] essentially shows that in

analytic Borel spaces, the R-closed measurable sets are

well-behaved when the relation R is defined in terms

of a sequence of measurable sets.

Theorem 16: Let (S,Σ) be an analytic Borel space.

Let F ⊆ Σ be countable and assume S ∈ F . Then

Σ(R(F)) = σ(F).
The following lemma provides a general framework

to prove that a logic characterizes bisimulation. In fact

we have used it to prove that less expressive logics

characterize traditional bisimulation in some restricted

NLMPs [9].

Lemma 17: Let (S,Σ, T ) be a NLMP with (S,Σ)
being an analytic Borel space. Let L′ be a logic s.t.

(i) L′ contains operators ⊤ and ∧ with the usual

semantics; (ii) for every formula φ ∈ L′, JφK is

Σ-measurable; (iii) the set of all formulas in L′ is

denumerable; and (iv) for every s R(L′) t and every

µ ∈ Ta(s) there exists µ′ ∈ Ta(t) such that ∀φ ∈
L′, µ(JφK) = µ′(JφK). Then, two logically equivalent

states s, t are traditionally bisimilar.

Proof: Let F = {JφK | φ ∈ L′}. Because of

(i), J⊤K = S and Jφ1K ∩ Jφ2K = Jφ1 ∧ φ2K. Hence
F forms a π-system. Because of (iv), µ, µ′ agree in

F and, by [2, Thm. 3.3], they also agree in σ(F).
Notice that hypotheses of Theorem 16 are met, i.e.,

Σ is analytic, F ⊆ Σ is countable (by (ii) and (iii))



such that S ∈ F (by (i)), and R(L′) equals R(F).
Therefore, by Theorem 16, σ(F) = Σ(R(L′)), which
implies that µ and µ′ agree in Σ(R(L′)). Since R(L′)
is symmetric, R(L′) is a traditional bisimulation.

Notice that Lemma 17 holds for any logic fulfilling

the hypothesis, in particular it should encode the trans-

fer property of the bisimulation and may not contain

negation. We already know that Lf has operators⊤ and

∧, is denumerable, and that each formula is interpreted

in a Σ-measurable set. In the following, we show that

the transfer property can be encoded by using the

modality.

Lemma 18: Let (S,Σ, T ) be an image finite NLMP

(i.e. Ta(s) is finite for all a ∈ L, s ∈ S). Then for every
pair of states such that s R(Lf) t and µ ∈ Ta(s), there
is a µ′ ∈ Ta(t) such that ∀φ ∈ Lf , µ(JφK) = µ′(JφK).

Proof: Suppose towards a contradiction that there

are s, t with s R(Lf) t and there is a µ ∈ Ta(s),
such that for all µ′

i ∈ Ta(t) there is a formula

φi ∈ Lf with µ(JφiK) 6= µ′
i(JφiK). Since Ta(t) is

finite, there are at most n different µ′
i. We can choose

⊲⊳i ∈ {>,<}, qi ∈ Q ∩ [0, 1] accordingly to make

µ(JφiK) ⊲⊳i qi ⊲⊳i µ
′
i(JφiK). Take ψ = 〈a〉[ ⊲⊳iqi

φi]
n
i=1.

Then s ∈ JψK but t /∈ JψK contradicting s R(Lf ) t.
So, finally, we can state the following theorem

Theorem 19: Let (S,Σ, T ) be an image finite

NLMP with (S,Σ) being analytic. For all s, t ∈ S,

s ∼t t⇔ s ∼ t⇔ s R(Lf) t

where s ∼t t denotes that there is a traditional

bisimulation R, s.t. s R t.
Proof: s ∼t t ⇒ s ∼ t (by Theorem 7) ⇒

s R(L) t (by Theorem 15) ⇒ s R(Lf) t (because

Lf ⊆ L) ⇒ s ∼t t (by Lemmas 17 and 18).

5. Concluding remarks

In order to define a process theory that permits

the verification of compositionally modeled systems

against simple (may be nondeterministic) specifica-

tions, it is necessary to have available a semantic

relation that allows for abstraction such as weak

bisimulation. In this setting, internal nondeterminism

is crucial.

In this paper we introduced the model of nonde-

terministic labeled Markov processes that allows for

the modeling of continuous probabilistic systems with

internal nondeterminism. Contrarily to similar mod-

els [4], [5], [7], [12], [13], [15], NLMPs are defined

to have a measure theoretic structure. In particular,

we require that the transition relation is a measurable

function that maps on measurable sets. This was de-

vised so that it is possible to build the rest of the

theory (particularly event bisimulation and logic, but

also schedulers are definable). We have shown that

NLMPs extend naturally LMPs. For the definition of

the transition and the development of the whole work,

Def. 4 is crucial, as it provides the foundation for

dealing with nondeterminism.

As a first step towards the desired process theory,

we gave different definitions for the bisimulation.We

proposed three possible generalizations of the two

bisimulations on LMPs. The event bisimulation re-

sponds exactly to the same definition principle both

in LMP and NLMP. Instead, the state bisimulation in

LMPs generalizes to NLMPs as state bisimulation and

as traditional bisimulation. We know that traditional

bisimulation is finer than state bisimulation and, in

Theorems 7 and 8, we gave sufficient conditions un-

der which they agree. However, we do not know if

they agree in general. Notice that the proofs of these

theorems lie on singling out a particular distribution

through a denumerable intersection of generator sets.

Because of this observation, we are considering to

restrict to standard Borel spaces to better understand

the relation between the two bisimulations.

We also gave a logical characterization of event

bisimulation (Theorem 13). Such logic (L) can be seen

as a revision of the one introduced by [24] in a discrete

probabilistic setting. Formulas in our setting belong

to two different classes: state formulas and measure

formulas. Notice that negation and infinitary (but de-

numerable) disjunction (or conjunction) is only present

on the second class, meaning that the complexity of the

model lies precisely on the internal nondeterminism.

A consequence of the characterization is that the

logic is sound for state and traditional bisimulations

(Theorem 15). We do not have any evidence that sug-

gests that logical equivalence (and hence event bisim-

ulation) agrees or disagrees with state or traditional

bisimulation in general. However, for the restricted

case of image finite NLMPs running on analytic Borel

spaces, all equivalences coincide (Theorem 19). Notice

that the logic we used to show such equivalence is in

fact a sublogic of L which has already appeared in a

preliminary work [9].

In case that the bisimulations turn out not to be

equivalent, the natural definition of the logic L sug-

gests that event bisimulation is the most appropriate

definition of all, provided one accepts that transition

functions should be indeed measurable on the σ-
algebra H(∆(Σ)).

Notice that the conditions of Lemma 17 also points

to a possible restriction to standard Borel spaces, a

setting in which the three bisimulation may agree.

Confining to standard Borel spaces is not as restricting



as it seems since most natural problems arise in this

setting. For example, we have shown elsewhere that

the underlying semantics of stochastic automata [12] in

terms of NLMP meets most of the restrictions required

in this article: it runs on standard Borel spaces and it

is image finite. We recall that stochastic automata and

similar models are used to give semantics to stochastic

process algebras and specification languages [3]–[5],

[12], [13, etc.] which, in turn, are used to model dy-

namic systems. Moreover, LMP-like models restricted

to standard Borel spaces have been studied [17].

At the moment, we are busy on the study of sched-

ulers for NLMPs and probabilistic trace semantics.

This will allow us to contrast the two local behavioral

equivalences, state and traditional bisimulation. It is

expected that at least one of them implies a global be-

havioral equivalence, like probabilistic trace equality.

Schedulers would also let us define probabilistic weak

transitions and their related bisimulations.
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