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Abstract

We extend the theory of labeled Markov processes
with internal nondeterminism, a fundamental concept

for the further development of a process theory with

abstraction on nondeterministic continuous probabilis-
tic systems. We define nondeterministic labeled Markov
processes (NLMP) and provide both a state based
bisimulation and an event based bisimulation. We show

the relation between them, including that the largest

state bisimulation is also an event bisimulation. We
also introduce a variation of the Hennessy-Milner

logic that characterizes event bisimulation and that is

sound w.r.t. the state base bisimulation for arbitrary
NLMP. This logic, however, is infinitary as it contains

a denumerable ∨. We then introduce a finitary sublogic
that characterize both state and event bisimulation for

image finite NLMP whose underlying measure space

is also analytic. Hence, in this setting, all notions of
bisimulation we deal with turn out to be equal.

1. Introduction

Markov processes with continuous-state spaces or
continuous time evolution (or both) arise naturally
in several fields of physics, biology, economics, and
computer science [11]. Many formal frameworks have
been defined to study them from a process theory or
process algebra perspective (see [4], [5], [7], [8], [11]–
[15], [26]). A prominent and extensive work on this
area is the one that builds on top of the so called
labeled Markov processes (LMP) [14], [15]. This is
due to its solid and well understood mathematical foun-
dations. A LMP allows for many transition probability
functions (or Markov kernels) leaving each state (in-
stead of only one as in usual Markov processes). Each
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transition probability function is a measure ranging
on a (possibly continuous) measurable space, and the
different transition probability functions can be singled
out through labels. Thus this model does not consider
internal non-determinism. From the process algebra
point of view, this is a significant drawback for this the-
ory since internal nondeterminism immediately arises
in the analysis of systems, e.g., because of abstracting
internal activity (such as weak bisimulation [22]) or
because of state abstraction techniques (such as in
model checking [10]).

Many other works defined variants of continu-
ous Markov processes that include internal non-
determinism and are mainly used as the underlying
semantics of a process algebra [4], [5], [12], [13], [26].
They also defined a continuous probabilistic variant
of the (strong) bisimulation. As correctly pointed out
by Cattani et al. [7], [8], these models lack enough
structure to ensure that bisimilar models share the
same observable behavior. (This is due to the case
in which two objects may be bisimilar but in one of
them it is not possible to define probabilistic executions
since the transition relation is not a measurable object.)
The solution proposed in [7], [8] deals with the same
unstructured type of models and lift the burden of
checking measurability to the semantic tools (such as
bisimulation or schedulers). In particular, this results in
the definition of a bisimulation as a relation between
measures rather than states.

A somewhat related observation has been made
in [11] with respect to the bisimulation relation on
LMPs [14], [15]. [11] shows that there are bisimulation
relations that may distinguish beyond events. That is,
states that cannot be separated (i.e., distinguished) by
any measurable set (i.e., an event) may not be related
for some bisimulation relation. This is also awkward
as events (measurable sets) are the building blocks of
observations (probabilistic executions). To overcome
this, [11] defines the so called event bisimulation (in
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opposition to the previous state bisimulation—name
which we will use from now on). An event bisimu-
lation is a sub σ-algebra Λ on the set of states such
that the original transition probability functions is also
a Markov kernel on Λ, i.e., the original LMP is also
an LMP under Λ. Λ induces an equivalence relation
R(Λ) also called event bisimulation. Fortunately, it
turns out that the largest state bisimulation is also an
event bisimulation.
In this paper, we follow the LMP approach towards

defining a theory of LMP with internal nondeter-
minism. Thus, we introduce nondeterministic labeled
Markov processes (NLMP). A NLMP has a nondeter-
ministic transition function Ta for each label a that,
given a state, it returns a measurable set of probability
measures (rather than only one probability measure as
in LMPs). Moreover, Ta should be measurable. This
calls for a definition of a σ-algebra on top of Giry’s
σ-algebra on the set of probability measures [18],
which we also provide. We give a definition for event
bisimulation and state bisimulation and prove similar
properties to [11], including that the largest state
bisimulation is also an event bisimulation. We also
provide a definition of “traditional” bisimulation that
follows the lines of [4], [12], [13], [26]. We prove that a
traditional bisimulation is also a state bisimulation and
give sufficient conditions so that the converse holds.
Besides, we show that LMPs are just NLMPs without
internal nondeterminism and that state (resp. event)
bisimulation in the different models agree.
Behavioral equivalences like bisimulation have been

characterized using logic with modalities, notably the
Hennessy-Milner logic (see e.g. [19]). We define an
extension of the logic presented in the context of
LMP [14]. In fact, the logic is similar to that of [24],
which was introduced in a discrete setting. However,
unlike [24], we consider two different formula levels:
one that is interpreted on states, and the other that
is interpreted on measures. Such separation gives a
particular insight: the actual complexity of the model
lies exactly on the internal nondeterminism introduced
by the target of function Ta (which is a set of mea-
sures). At state level, the logic is as simple as in [14].
We show that this logic completely characterizes event
bisimulation and, as a consequence, it is sound w.r.t.
traditional and state bisimulation.
In addition, we show that a sublogic of the previous

logic characterizes all three bisimulations (event, state
and traditional) provided certain restrictions apply,
namely, NLMPs are image finite and the state space
is analytic. Therefore, all bisimulation equivalences as
well as logical equivalence turn out to be the same on
this setting.

2. Fundamentals and Background

In this section we review some foundational theory
and prove few basic results that will be of use through-
out the paper.

Measure theory. Given a set Ω and a collection F
of subsets of Ω, we call F a σ-algebra iff Ω ∈ F
and F is closed under complement and denumerable
union. By σ(H) we denote the σ-algebra generated

by the family H ⊆ 2Ω, i.e., the minimal σ-algebra
containing H. Each element of H is called generator
and H, the set of generators. We call the pair (Ω,F)
a measurable space. A measurable set is a set A ∈ F .
Let (Ωi,Fi), i = 1, 2, . . . , n be measurable spaces and
Ω = Ω1 × Ω2 × · · ·× Ωn. A measurable rectangle in
Ω is a set A = A1 × A2 × · · ·× An, where Ai ∈ Fi.
The product σ-algebra F1 ⊗ F2 ⊗ · · · ⊗ Fn is the
σ-algebra generated by measurable rectangles. A σ-
additive function µ : F → [0, 1] such that µ(Ω) = 1
is called probability measure. By δa we denote the
Dirac probability measure concentrated in {a}. Let
∆(Ω) denote the set of all probability measures over
the measurable space (Ω,F). A function f : Ω1,→ Ω2

is said to be measurable if ∀A2 ∈ F2, f−1(A2) ∈ F1,
i.e., the inverse function maps measurable sets to
measurable sets.

A function f : Ω1 × F2 → [0, 1] is a transition

probability (also called Markov Kernel) if for all ω1 ∈
Ω1, f(ω1, ·) is a probability measure on (Ω2,F2) and
for all A2 ∈ F2, f(·, A2) is measurable.

There is a standard construction by Giry [18] to
endow ∆(Ω) with a σ-algebra as follows: ∆(F) is
defined as the σ-algebra generated by the sets of
probability measures ∆B(Q)

.
= {ν | ν(Q) ∈ B},

with Q ∈ F and B ∈ B([0, 1]). (B([0, 1]) is the
Borel σ-algebra on the interval [0, 1] generated by
the open sets.) When 0 ≤ p ≤ 1, we will write
∆≥p(Q), ∆>p(Q), ∆<p(Q), etc. for ∆B(Q) with
B = [p, 1], (p, 1], [0, p), etc. respectively. It is known
that the set {∆≥p(Q) | p ∈ (Q ∩ [0, 1]), Q ∈ F}
generates all ∆(F).

On this setting, f : Ω1 × F2 → [0, 1] is a transition
probability if and only if its curried version f : Ω1 →
∆(Ω2) is measurable. (Mind the notation overloading
on f .) This follows from the next lemma.

Lemma 1: f : Ω1 → ∆(Ω2) is measurable iff
f(·, Q) : Ω1 → [0, 1] is measurable for all Q ∈ F2.

Proof: It is routine to calculate that
f−1(∆B(Q)) = (f(·, Q))−1(B) for all Q ∈ F2 and
B ∈ B([0, 1]). By this observation, f−1(∆B(Q)) ∈ F1

iff (f(·, Q))−1(B) ∈ F1. Since it is sufficient to show
that f−1(∆B(Q)) ∈ F1 for all generators ∆B(Q) to
state that f is measurable [1], the lemma follows.
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An important result on Giry’s construction is that
the σ-algebra of measures is separative [6], i.e., for
any two elements, there is always a measurable set that
contains one element but not the other.

Proposition 1: ∆(Σ) is separative. That is, given
different µ, µ′ ∈ ∆(S), there exists Θ ∈ ∆(Σ) such
that µ ∈ Θ and µ′ /∈ Θ.

Relations, Measures, and σ-algebras. Given a
relation R ⊆ S × S, the predicate R-closed(Q)
denotes R(Q) ⊆ Q. Notice that if R is symmetric,
R-closed(Q) if and only if ∀s, t : sRt : s ∈ Q ⇔ t ∈
Q. Let (S, Σ) be a measurable space. For symmetric
R, define Σ(R)

.
= {Q ∈ Σ | R-closed(Q)}. Σ(R)

is the sub-σ-algebra of Σ containing all R-closed
Σ-measurable sets. The next proposition states that
the inclusion order between two relations transfers
inversely to the σ-algebras induced by them and to
Giry’s construction applied to these σ-algebras.
Proposition 2: Let R and R′ be symmetric relations

such that R ⊆ R′. Then (i) Σ(R) ⊇ Σ(R′) and
(ii) ∆(Σ(R)) ⊇ ∆(Σ(R′)).

Proof: (i) follows from the fact that any measur-
able set that is R′-closed is also R-closed whenever
R ⊆ R′. For (ii), recall that ∆(Σ(R′)) is generated
by G = {∆B(Q) | Q ∈ Σ(R′) and B ∈ B([0, 1])}.
Since Σ(R′) ⊆ Σ(R) (by (i)), then G ⊆ ∆(Σ(R))
from which the lemma follows.

We can lift R to an equivalence relation in ∆(S) as
follows: µRµ′ iff ∀Q ∈ Σ(R) : µ(Q) = µ′(Q). Then,
the predicate R-closed can be defined on subsets of
∆(S) just like before. The following proposition will
be useful.

Proposition 3: If R is a symmetric relation, every
∆(Σ(R))-measurable set is R-closed.

Proof: Let Q ∈ Σ(R) and B ∈ B([0, 1]). Then,
if µ ∈ ∆B(Q) and µRµ′, µ′ ∈ ∆B(Q). So, each
generator ∆B(Q) of ∆(Σ(R)) is R-closed. Moreover,
for any symmetric R, the property of being R-closed
is preserved by denumerable union and complement.
Since the lifted R is symmetric, we can conclude that
every ∆(Σ(R))-measurable set is R-closed.

A σ-algebra Σ defines an equivalence relation R(Σ)
on S as follows: sR(Σ)t iff ∀Q ∈ Σ, s ∈ Q ⇔ t ∈ Q.
That is, two elements are related if they cannot be sep-
arated by any measurable set. The following properties
(due to [11]) appear here for the sake of completeness;
they relate σ-algebras and relations. In particular, (v)
is a consequence of (i) and (ii).

Proposition 4: Let (S, Σ) be a measurable space, R
a symmetric relation on S, and Λ ⊆ Σ a sub-σ-algebra
of Σ. Then, (i) Λ ⊆ Σ(R(Λ)); (ii) R ⊆ R(Σ(R));
(iii) if each R-equivalence class is in Σ, then R =

R(Σ(R)); (iv) R(Λ) = R(Σ(R(Λ))); and (v) Σ(R) =
Σ(R(Σ(R)))1.

Labeled Markov Processes. A labeled Markov pro-
cess (LMP) [14], [15] is a triple (S, Σ, {τa | a ∈ L})
where Σ is a σ-algebra on the set of states S, and for
each label a ∈ L, τa : S × Σ → [0, 1] is a transition
probability. By Lemma 1, we can say that (S, Σ, {τa |
a ∈ L}) is an LMP if every τa : S → ∆(S) is
measurable.

In [14], [15], a notion of behavioral equivalence
similar to Larsen-Skou probabilistic bisimulation [21]
is introduced.

Definition 1: R ⊆ S × S is a state bisimulation on

LMP (S, Σ, {τa | a ∈ L}) if it is symmetric2 and for
all s, t ∈ S, a ∈ L, sRt implies that τa(s)Rτa(t).

This definition is pointwise and not “eventwise”
as one should expect in a measure-theoretic realm,
besides R has no measurability restriction. In [11] a
measure-theoretic aware notion of behavioral equiva-
lence is introduced.

Definition 2: An event bisimulation on a LMP
(S, Σ, {τa | a ∈ L}) is a sub-σ-algebra Λ of Σ s.t.
(S, Λ, {τa | a ∈ L}) is a LMP.

[11] shows that R is state bisimulation iff Σ(R) is
an event bisimulation. This is an important result that
leads to prove that the largest state bisimulation is also
an event bisimulation (see Theorem 5 below).

3. Nondeterministic Labeled Markov Pro-
cesses

In this section we extend the LMP model adding in-
ternal nondeterminism. That is, we allow that different
but equally labeled transition probabilities leave out the
same state. We provide event and state bisimulations
for this model, show the relation to LMPs and the
relation to earlier definitions of bisimulation on non-
deterministic and continuous probabilistic transition
systems.

The model. There have been several attempts to
define nondeterministic continuous probabilistic tran-
sition systems and all of them are straightforward
extensions of (simpler) discrete versions. There are two
fundamental differences in our new model. The first
one is that the nondeterministic transition function Ta

now maps states to measurable sets of probability mea-
sures rather than arbitrary sets as previous approaches.

1. Prop. 4(v) appears in [11] unnecessarily requiring that R is a
state bisimulation.

2. The requirement of symmetry is needed otherwise Σ(R) may
not be a σ-algebra
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This is motivated by the fact that later on the nonde-
terminism has to be resolved using schedulers. If we
allowed the target set of states to be an arbitrary subset,
(as some continuous ones [5], [8], [12]), the system
as a whole could suffer from non-measurability issues
and therefore it could not be quantified. (Rigorously
speaking, labels should also be provided with a σ-
algebra, but we omit it here since it is not needed.)
The second difference is inspired by the definition of
LMP and Lemma 1 (see also the alternative definition
of LMP above): we ask that, for each label a ∈ L, Ta

is a measurable function. One of the reasons for this
restriction is to have well defined modal operators of a
probabilistic Hennessy-Milner logic, like in the LMP
case.
Definition 3: A nondeterministic labeled Markov

process (NLMP for short) is a structure (S, Σ, {Ta |
a ∈ L}) where Σ is a σ-algebra on the set of states
S, and for each label a ∈ L, Ta : S → ∆(Σ) is
measurable.
For the requirement that Ta is measurable, we need

to endow ∆(Σ) with a σ-algebra. This is a key
construction to forthcoming definitions and theorems.
Definition 4: H(∆(Σ)) is the minimal σ-algebra

containing all sets Hξ
.
= {Θ ∈ ∆(Σ) | Θ ∩ ξ ,= ∅}

with ξ ∈ ∆(Σ).
This construction is similar to that of the Effros-

Borel spaces [20] and resembles the so-called hit-and-
miss topologies [23]. Note that the generator set Hξ

contains all measurable sets that “hit” the measurable
set ξ. Also observe that T−1

a (Hξ) is the set of all
states s such that, through label a, “hit” the set of
measures ξ (i.e., Ta(s) ∩ ξ ,= ∅). This forms the basis
to existentially quantify over the nondeterminism, and
it is fundamental for the behavioral equivalence and
the logic.
The next two examples (inspired by an example

in [7]) show why Ta is required to map into measurable
sets and to be measurable. For these examples we fix
the state space and σ-algebra in the real unit interval
with the standard Borel σ-algebra.
Example 1: Let V = {δq | q ∈ V }, where V is the

non-measurable Vitali set in [0, 1]. It can be shown that
V is not measurable in ∆(Σ). Let Ta(s) = V for all s ∈
[0, 1]. The resolution of the internal non-determinism
by means of so called schedulers (also adversaries or
policies) [25], [27], whatever its definition is, would
require to assign probabilities to all possible choices.
This amounts to measure the nonmeasurable set Ta(s).
This is why we require that Ta maps into measurable
sets.
Example 2: Let Ta(s) = {µ} for a fixed measure

µ, and let Tb(s) = if (s ∈ V ) then {δ1} else ∅, for

every s ∈ [0, 1], with V being a Vitali set. Notice that
both Ta(s) and Tb(s) are measurable sets for every
s ∈ [0, 1]. Supposing that there is a scheduler that
chooses to first do a and then b starting at some state
s, the probability of such set of executions cannot
be measured, as it requires to apply µ to the set
T−1

b (H∆(S)) = V which is not measurable. Besides,
we will later need that sets T−1

a (Hξ) are measurable
so that the semantics of the logic maps into measurable
sets (see Sec. 4).

NLMPs as a generalization of LMPs. Notice that
a LMP is a NLMP without internal nondeterminism.
That is, a NLMP in which Ta(s) is a singleton for all
a ∈ L and s ∈ S, is a LMP. In fact, a LMP can be
encoded as a NLMP by taking Ta(s) = {τa(s)}. (We
formally prove this in Prop. 5.) As a consequence it is
necessary that singletons {µ} are measurable in ∆(Σ)
for the NLMP to be well defined. The following lemma
gives sufficient conditions to ensure that all singletons
are measurable in ∆(Σ).

Lemma 2: Let G be a denumerable π-system on
S (i.e., a denumerable subset of 2S containing S
and closed under finite intersection). Then, for all
µ ∈ ∆(S), {µ} ∈ ∆(σ(G)).

Proof: It is sufficient to prove that the set

∩{∆>qi(Qi) | Qi ∈ G, qi ∈ Q ∩ [0, 1], qi < µ(Qi)}∩

∩{∆<qi(Qi) | Qi ∈ G, qi ∈ Q ∩ [0, 1], µ(Qi) < qi},

which is a denumerable intersection, is equal to the
singleton {µ}. By construction µ is in the intersection.
Take µ′ s.t. µ ,= µ′. By a classical theorem of extension
of a measure [2, Theorem 3.3], there must be a Qi ∈ G
such that µ(Qi) ,= µ′(Qi). If µ(Qi) > µ′(Qi) then µ′

does not belong to the first intersection; if µ(Qi) <
µ′(Qi), µ′ does not belong to the second one.

In other words, we can guarantee that singletons are
measurable in Giry’s construction if the underlying σ-
algebra is countably generated. Note that Lemma 2
gives also sufficient conditions to define NLMPs with
finite and denumerable nondeterminism.

Notice also that asking for measurable singletons in
∆(Σ) does not trivialize Σ (in the sense that Σ =
2S). A nontrivial example in which Lemma 2 holds
is the standard Borel σ-algebra in R. A less obvious
example is as follows. Let the σ-algebra Q-coQ

.
=

2Q ∪ {R \ Q | Q ∈ 2Q}. Notice that Q-coQ cannot
separate one irrational from another (let alone asking
for all singletons being measurable). Nevertheless, as it
is generated by the denumerable π-system {{q} | q ∈
Q} ∪ {∅}, it is under the conditions of Lemma 2 and
hence for every measure µ on it, {µ} is measurable on
∆(Q-coQ).
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The formal connection between NLMP and LMP is
an immediate consequence of the next proposition.

Proposition 5: Let Ta(s) = {τa(s)} for all s ∈ S
and let Σ be a σ-algebra on S. Then τa : S → ∆(S)
is measurable iff Ta : S → ∆(Σ) is measurable.

Proof: Let ξ ∈ ∆(Σ). Note that Ta(s) ∈ Hξ iff
{τa(s)} ∩ ξ ,= ∅ iff τa(s) ∈ ξ. Then T−1

a (Hξ) =
τ−1
a (ξ). Therefore τa is measurable whenever Ta is
measurable. For the converse, we have that T−1

a (Hξ)
is measurable for all generators Hξ . As a consequence
Ta is measurable in general [1].

The bisimulations. Event bisimulation in NLMP is
defined exactly in the same way as for LMP: an event
bisimulation is a sub-σ-algebra that, together with the
same set of states and transition of the original NLMP,
makes a new NLMP.

Definition 5: An event bisimulation on a NLMP
(S, Σ, {Ta | a ∈ L}) is a sub-σ-algebra Λ of Σ s.t.
(S, Λ, {Ta | a ∈ L}) is a NLMP, that is, Ta is Λ-
measurable for each a ∈ L.
We extend the notion of event bisimulation to relations.
We say that a relation R is an event bisimulation if
there is an event bisimulation Λ s.t. R = R(Λ). We
remark that, by Prop. 5, an event bisimulation on a
LMP is also an event bisimulation on the encoding
NLMP and vice-versa.

The definition of state bisimulation is less standard.
Following the original definition of Milner [22] (which
was lifted to discrete probabilistic models by Larsen
and Skou [21]), a traditional definition of bisimulation
(see Def. 7) verifies that, whenever sRt, every measure
on Ta(s) has a corresponding one (modulo R) in Ta(t).
Rather than looking pointwise at probability measures,
our definition follows the idea of Def. 4 and verifies
that both Ta(s) and Ta(t) hit the same measurable sets
of measures.

Definition 6: A relation R ⊆ S×S is a state bisim-
ulation if it is symmetric and for all a ∈ L, sRt implies
∀ξ ∈ ∆(Σ(R)) : Ta(s) ∩ ξ ,= ∅ ⇔ Ta(t) ∩ ξ ,= ∅.
The following property, which also holds in LMPs,

states the fundamental relation between state bisimu-
lation and event bisimulation.

Lemma 3: Provided R is symmetric, R is a state
bisimulation iff Σ(R) is an event bisimulation.

Proof: By Def. 5, Σ(R) is an event bisimulation
iff Ta is Σ(R)-measurable. Since Ta is Σ-measurable,
it suffices to prove that T−1

a (Hξ) is R-closed for all
labels a ∈ L and generators Hξ , ξ ∈ ∆(Σ(R)).

R-closed(T−1
a (Hξ))

iff (R is symmetric)

sRt ⇒
(

s ∈ T−1
a (Hξ) ⇔ t ∈ T−1

a (Hξ)
)

iff (Def. inverse function)

sRt ⇒ (Ta(s) ∈ Hξ ⇔ Ta(t) ∈ Hξ)

iff (Def. of Hξ)

sRt ⇒ (Ta(s) ∩ ξ ,= ∅ ⇔ Ta(t) ∩ ξ ,= ∅) .

The last statement is the definition of state
bisimulation.

The following results are consequences of Prop. 4
and, for the case of Lemma 4.3, Lemma 3 and the
fact that R(Λ) is an equivalence relation. The proofs
are the same as the proofs of similar results for LMP
in [11].

Lemma 4: Let R be a state bisimulation. Then:

1) R is an event bisimulation iff R = R(Σ(R)).
2) If the equivalence classes of R are in Σ, R is an

event bisimulation.
3) R(Σ(R)) is both a state bisimulation and an event

bisimulation.
Let ∼ =

⋃

{R | R is a state bisimulation}. In the
following we show that ∼ is also a state bisimulation
and hence the largest one. Moreover, we show that ∼
is also an event bisimulation and, as a consequence,
an equivalence relation.

Theorem 5: ∼ is (i) the largest state bisimulation,
(ii) an event bisimulation, and (iii) an equivalence
relation.

Proof: (i) Take s, t ∈ S s.t. s ∼ t. Then there is a
state bisimulation R with sRt. Take a measurable set
ξ ∈ ∆(Σ(∼)). Since R ⊆∼, by Prop. 2, ∆(Σ(R)) ⊇
∆(Σ(∼)). Hence ξ ∈ ∆(Σ(R)) and by Def. 6, Ta(s)∩
ξ ,= ∅ ⇔ Ta(t) ∩ ξ ,= ∅ which prove that ∼ is a state
bisimulation. By definition, it is the largest one.
(ii) Because ∼ is a state bisimulation, R(Σ(∼))
is a state bisimulation and an event bisimulation
(Lemma 4.3). Since ∼ is the largest bisimulation then
∼= R(Σ(∼)) and hence it is an event bisimulation.
(iii) By definition, every event bisimulation is an
equivalence relation.

A traditional view to bisimulation. We have already
stated that our definition of state bisimulation differs
from a more traditional view such as those in [4],
[5], [12], [13], [26]. These definitions closely resemble
Larsen & Skou’s definition [21]. (The only difference
is that two measures are considered equivalent if they
agree in every measurable union of equivalence classes
induced by the relation.) In the following, we give a
more “modern” variant of this definition.

Definition 7: A relation R is a traditional bisimula-
tion if it is symmetric and for all a ∈ L, sRt implies
Ta(s) R Ta(t).
Note that R is lifted this time to sets as is usual:
Ta(s) R Ta(t) if for all µ ∈ Ta(s), there is µ′ ∈ Ta(t)
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s.t. µRµ′ and vice-versa. (Had we explicitly written
this definition on Def. 7, it would have resembled
traditional definitions.)

In the following we discuss the relation be-
tween state bisimulation and traditional bisimulation.
Lemma 6 states that every traditional bisimulation is
a state bisimulation. Theorems 7 and 8 give sufficient
conditions to strengthen Lemma 6 so that the converse
also holds.

Lemma 6: If R is a traditional bisimulation, then R
is a state bisimulation.

Proof: Let sRt and ξ ∈ ∆(Σ(R)). If Ta(s)∩ ξ ,=
∅, then there is µ ∈ Ta(s) s.t. µ ∈ ξ. Since R is
a traditional bisimulation, Ta(s) R Ta(t), i.e., there
is µ′ ∈ Ta(t) s.t. µRµ′. By Prop. 3 R-closed(ξ), so
µ′ ∈ ξ, and hence Ta(t)∩ξ ,= ∅ as required. The other
implication follows by symmetry.

In the following we give two sufficient conditions
so that a state bisimulation is also a traditional bisim-
ulation. The first condition focuses on the NLMP. It
requires the NLMP to be image denumerable.

Definition 8: A NLMP (S, Σ, {Ta | a ∈ L}) is
image denumerable iff for all a ∈ L, s ∈ S, Ta(s)
is denumerable.

Theorem 7: Let (S, Σ, {Ta | a ∈ L}) be an image
denumerable NLMP. Then R is a traditional bisimula-
tion iff it is a state bisimulation.

Proof: The left-to-right implication is Lemma 6.
For the other implication we proceed as follows.

Let sRt and for all ξ ∈ ∆(Σ(R)), Ta(s) ∩ ξ ,=
∅ ⇔ Ta(t) ∩ ξ ,= ∅. Suppose towards a contradiction
that Ta(s) ,R Ta(t), i.e. ∃µ ∈ Ta(s), ∀µ′

i ∈ Ta(t) :
∃Qi ∈ Σ(R) : µ(Qi) ()i µ′

i(Qi), where ()i ∈ {>
, <} and i ∈ N (the NLMP is image denumerable).
By density of the rationals, there are {qi}i ⊆ Q ∩
[0, 1] such that µ(Qi) ()i qi ()i µ′

i(Qi). Then µ ∈
∆"#iqi(Qi) ,2 µ′

i. Let ξ
.
= ∩i∆"#iqi(Qi). This set is

measurable, moreover, since every Qi ∈ Σ(R), so ξ ∈
∆(Σ(R)). Then µ ∈ Ta(s)∩ξ, but Ta(t)∩ξ = ∅ hence
contradicting the assumption.

After reading the proof, it should be clear that we
can relax the sufficient condition to require that the
partition Ta(s)/R is denumerable for each state s and
label a instead of image denumerability.

Observe that a state bisimulation on a LMP is a
traditional bisimulation on the encoding NLMP and
vice-versa since {τa(s)} = Ta(s) R Ta(t) = {τa(t)}
iff τa(s) R τa(t). As a consequence of Lemma 6 and
Theorem 7 (a deterministic NLMP is image denumer-
able!), we conclude that a state bisimulation on a LMP
is a state bisimulation on the encoding NLMP and vice-
versa.

The second sufficient condition looks at the σ-
algebra Σ(R) induced by the state bisimulation R. It
turns out that if Σ(R) is generated by a denumerable
π-system, R is also a traditional bisimulation.

Theorem 8: Let R be a symmetric relation such that
Σ(R) is generated by a denumerable set G. Then R is
a traditional bisimulation iff it is a state bisimulation.

Proof: As before, the left-to-right implication is
Lemma 6. For the other implication we proceed as
follows. Suppose towards a contradiction that sRt and
Ta(s) ,R Ta(t), i.e. ∃µ ∈ Ta(s), ∀µ′ ∈ Ta(t) : µ ,R µ′.
By [2, Theorem 3.3], this implies that there exists
Qi ∈ π(G) s.t. µ(Qi) ,= µ′(Qi) with i ∈ N.
(Notice that π(G), the π-system generated by G, is
also denumerable and generates Σ(R).) The rest of
the proof is as in Theorem 7.

4. A Logic for Bisimulation on NLMP

The logic we present below is based on the logic
given by Parma and Segala [24]. The main difference
is that we consider two kind of formulas: one that is
interpreted on states, and another that is interpreted on
measures. The syntax is as follows,

φ ≡ 4 | φ1 ∧ φ2 | 〈a〉ψ

ψ ≡
∨

i ψi | ¬ψ | [φ]≥q

where a ∈ L and q ∈ Q ∩ [0, 1]. We denote by L the
set of all formulas generated by the first production
and by L∆ the set of all formulas generated by the
second production.

Semantics is defined with respect to a NLMP
(S, Σ, T ). Formulas in L are interpreted as sets of
states in which they become true, and formulas in L∆

are interpreted as sets of measures on states as follows,

!4" = S !
∨

i ψi" =
⋃

i!ψi"

!φ1 ∧ φ2" = !φ1" ∩ !φ2" !¬ψ" = !ψ"c

!〈a〉ψ" = T−1
a (H!ψ") ![φ]≥q" = ∆≥q(!φ")

In particular, notice that 〈a〉ψ is valid in a state s
whenever there is some measure µ ∈ Ta(s) that
makes ψ valid, and that [φ]≥q is valid in a measure
µ whenever µ(!φ") ≥ q. As a consequence, we need
that sets !φ" and !ψ" are measurable in Σ and ∆(Σ),
respectively. Indeed, this follows straightforwardly by
induction on the construction of the formula after ob-
serving that all operations involved in the definition of
the semantics preserve measurability (in particular Ta

is a measurable function). For the rest of the section, fix
!L" = {!φ" | φ ∈ L} and !L∆" = {!ψ" | ψ ∈ L∆}.

We particularly notice that some other operators can
be encoded as syntactic sugar. For instance, we can
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define [φ]>r ≡
∨

q∈Q∩[0,1]∧q>r[φ]≥q for any real

r ∈ [0, 1], and [φ]≤r ≡ ¬[φ]>r.
We show that L characterizes event bisimulation.

This is an immediate consequence of the fact that
σ(!L"), the σ-algebra generated by the logic L, is the
smallest event bisimulation, which is what we aim to
prove in this part of the section. The proof strategy
resembles that of [11, Sec. 5] but it is properly tailored
to our two level logic. Moreover, such a separation
allowed us to find an alternative to Dynkin’s theorem
(used in [11]).
We extend the definition of ∆(C) to any arbitrary set

C ⊆ Σ by taking ∆(C) to be the σ-algebra generated
by ∆≥p(Q)

.
= {ν | ν(Q) ≥ p}, with Q ∈ C and p ∈

[0, 1]. From now on we write σ(L), ∆(L) and R(L)
instead of σ(!L"), ∆(!L") and R(!L"), respectively.
The concept of stable family of measurable sets is

crucial to the proof of Theorem 13.
Definition 9: Given a NLMP (S, Σ, T ), the family

C ⊆ Σ is stable for (S, Σ, T ) if for all a ∈ L and
ξ ∈ ∆(C), T−1

a (Hξ) ∈ C.
Notice that C is an event bisimulation iff it is a stable

σ-algebra.
The key point of the proof is to show that !L" is the

smallest stable π-system, which is stated in Lemma 10.
The next lemma is auxiliary to Lemma 10.
Lemma 9: !L∆" = ∆(L)
Proof: !L∆" is a σ-algebra since: (i) ∆(S) =

![4]≥1" ∈ !L∆"; (ii) for ξi ∈ !L∆" there are ψi ∈ L∆

s.t. ξi = !ψi", and hence
⋃

i ξi =
⋃

i!ψi" = !
∨

i ψi" ∈
!L∆"; and (iii) for ξ ∈ !L∆" there is ψ ∈ L∆ s.t.
ξ = !ψ", and hence ξc = !ψ"c = !¬ψ" ∈ !L∆".
Moreover, since ![φ]≥p" = ∆≥p(!φ"), every generator
set of ∆(L) is in !L∆" and hence ∆(L) ⊆ !L∆".
Finally, it can be proven by induction on the depth

of the formula that !L∆" ⊆ C for any σ-algebra C con-
taining all sets ![φ]≥p" = ∆≥p(!φ") for p ∈ [0, 1] and
φ ∈ L. Then !L∆" is the smallest σ-algebra containing
all generator sets of ∆(L). Therefore !L∆" = ∆(L).

Lemma 10: !L" is the smallest stable π-system for
(S, Σ, T ).

Proof: !L" is a π-system since: (i) S = !4" ∈ !L"
and (ii) for Q1, Q2 ∈ !L" there are φ1,φ2 ∈ L s.t.
Q1 = !φ1" and Q2 = !φ2", and hence Q1 ∩ Q2 =
!φ1" ∩ !φ2" = !φ1 ∩ φ2" ∈ !L".
For stability, let ξ ∈ ∆(L). By Lemma 9, there is

ψ ∈ L∆ s.t. !ψ" = ξ. Then T−1
a (Hξ) = T−1

a (H!ψ") =
!〈a〉ψ" ∈ !L".
Let C be another stable π-system for (S, Σ, T ). By

induction in the depth of the formula we show simul-
taneously that C ⊇ !L" and ∆(C) ⊇ ∆(L). First notice
that !4" = S ∈ C since C is a π-system. Now, suppose

inductively that !φ", !φ1", !φ2" ∈ C and !ψ", !ψi" ∈
∆(C) for i ≥ 0. Then: (i) !φ1∧φ2" = !φ1"∩!φ2" ∈ C,
because C is a π-system; (ii) !〈a〉ψ" = T−1

a (H!ψ") ∈
C, because C is stable; (iii) !

∨

i ψi" =
⋃

i!ψi" ∈ ∆(C)
and (iv) !¬ψ" = !ψ"c ∈ ∆(C) because ∆(C) is a σ-
algebra; and finally, (v) ![φ]≥p" = ∆≥p(!φ") ∈ ∆(C)
by definition of generator set of ∆(C).

Lemma 11 is auxiliary to Lemma 12. It is also
significantly simpler than its relative in [11, Lemma
5.4]. This is due to our definition of stability and the
use of a powerful result of [28].

Lemma 11: If C is a stable π-system for (S, Σ, T ),
then σ(C) is also stable.

Proof: First notice that C is stable iff {T−1
a (Hξ) |

a ∈ L, ξ ∈ ∆(C)} ⊆ C. By [28, Lemma 3.6], ∆(C) =
∆(σ(C)). Then {T−1

a (Hξ) | a ∈ L, ξ ∈ ∆(σ(C))} ⊆
C ⊆ σ(C), which proves that σ(C) is stable.

The next lemma is central to the proof that L char-
acterizes event bisimulation, which is then presented
in Theorem 13.

Lemma 12: σ(L) is the smallest stable σ-algebra
included in Σ.

Proof: Let F be the smallest stable σ-algebra
included in Σ. By Lemma 10, !L" ⊆ F , since F is a
stable π-system. Therefore σ(L) ⊆ F since F is also a
σ-algebra. For the other inclusion, notice that !L" is a
stable π-system because of Lemma 10. By Lemma 11,
σ(L) is stable, therefore it contains F .

Theorem 13: The logic L completely characterizes
event bisimulation.

Proof: Lemma 12 establishes that σ(L) is stable,
i.e. it is an event bisimulation. Being the smallest, it
implies that any other event bisimulation preserves L
formulas.

A consequence of this and Theorem 5 is that state
bisimulation is sound for L, i.e., it preserves the
validity of formulas. This is stated in Theorem 15. We
first introduce an auxiliary lemma.

Lemma 14: R(C) = R(σ(C)).
Proof: We only need to show that R(C) ⊆

R(σ(C)) since the other inclusion is obvious. Let
s R(C) t. Notice that σ(C) = {Q ∈ σ(C) |
s ∈ Q ⇔ t ∈ Q}. (It is easy to see that this set is
closed by complement and denumerable union and
contains C.) From this and definition of R(σ(C)),
s R(σ(C)) t follows.

Theorem 15: ∼ ⊆ R(L).
Proof: By Theorem 5, Σ(∼) is an event bisimula-

tion and hence a stable σ-algebra. Then σ(L) ⊆ Σ(∼)
by Lemma 12. Therefore, using Lemma 14, R(L) =
R(σ(L)) ⊇ R(Σ(∼)) =∼.

Completeness on image finite NLMPs. The rest of
the section is devoted to show that the logic completely
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characterizes (all three) bisimulation on NLMPs with
image finite nondeterminism and standing on analytic
spaces. In fact, we show completeness of the sublogic
of L defined by:

φ ≡ 4 | φ1 ∧ φ2 | 〈a〉[ "#iqi
φi]

n
i=1

where ()i ∈ {>, <} and qi ∈ Q ∩ [0, 1]. We de-
fine the new modal operation as a shorthand nota-
tion: 〈a〉[ "#iqi

φi]ni=1 ≡ 〈a〉
∧n

i=1[φ]"#iqi
. Therefore,

!〈a〉[ "#iqi
φi]ni=1" = T−1

a (H∩n
i=1

∆!"iqi (!φi")). Let Lf ⊆
L denote the set of all formulas defined with the
grammar above. Notice that Lf is a denumerable set
whenever the set of labels L is denumerable.

The expression 〈a〉[ "#iqi
φi]ni=1 is like a conjunction

of formulas 〈a〉"#iqi
φi, but the probabilistic bounds

must be satisfied by the same nondeterministic transi-
tion. Modality 〈a〉"#qφ suffices to characterize bisimu-
lation on LMP [15] but, as we see in the next example,
it is not enough for the more general setting of NLMPs.

Example 3: Take the discrete NLMPs depicted be-
low. States s and t are not bisimilar since given a
µ ∈ Ta(s), there is no µ′ ∈ Ta(t) such that µ(Q) =
µ′(Q) for all Q ∈ {{x}, {y}, {z}} (which are the
only relevant possible R-closed sets). A logic having
a modality that can only describe one behavior after a
label will not be able to distinguish between s and t.
For example, !〈a〉>qφ" = {w | Ta(w) ∩ ∆>q(!φ") ,=
∅} will always have s and t together. Observe that
negation, denumerable conjunction or disjunction, do
not add any distinguishing power (on an image finite
setting).

s

a
a

a ta

a
a

µ1
µ2 µ′

0 µ′
1

µ0 xb y
c

z d µ′
2

µ0 µ1 µ2 µ′
0 µ′

1 µ′
2

{x} 1
3

2
3 0 2

3
1
3 0

{y} 0 1
3

2
3 0 2

3
1
3

{z} 2
3 0 1

3
1
3 0 2

3

The essential need for this new modal operator also
shows that our σ-algebra H(∆(Σ)) in Def. 4 can not
be simplified to σ({H∆B(Q) : B ∈ B([0, 1]), Q ∈ Σ}).
States s and t in the example above should be ob-
servationally distinguished from each other. Formally,
this amounts to say that there must be some label a
and some measurable Θ such that T−1

a (Θ) separates
{s} from {t}. Therefore, the same must be true for

some generator Θ, but this does not hold for the family
{H∆B(Q) : B ∈ B([0, 1]), Q ∈ Σ}.

Logical characterization of bisimulation is suc-
cinctly stated as s ∼ t ⇔ s R(Lf ) t. The left-to-
right implication is immediate by Theorem 15. For the
converse, we restrict the state space and the branching.

The strategy is to prove that R(Lf ) is a traditional
bisimulation, that is, s R(Lf) t implies that ∀µ ∈
Ta(s), ∃µ′ ∈ Ta(t), µ R(Lf) µ′; recall this means
µ(Q) = µ′(Q) for all Q ∈ Σ(R(Lf)). For analytic
spaces this holds if it is valid for the restricted set of
Q ∈ Σ(R(Lf )) such that Q = !φ", for some φ ∈ Lf .
We first introduce analytic spaces and a result from
descriptive set theory that is fundamental for the proof.

Definition 10: A topological space is Polish if it is
separable (i.e. it contains a countable dense subset) and
completely metrizable. A topological space is analytic
if it is the continuous image of a Polish space. A
measurable space is analytic (standard) Borel if it
is isomorphic to (X,σ(T )) where T is an analytic
(Polish) topology on X .

Every standard Borel space is analytic, but the
converse is false. The real line with the usual Borel
σ-algebra, and more generally, AN with A a count-
able discrete space, are standard Borel and therefore,
analytic.

The next theorem from [16] essentially shows that in
analytic Borel spaces, the R-closed measurable sets are
well-behaved when the relation R is defined in terms
of a sequence of measurable sets.

Theorem 16: Let (S, Σ) be an analytic Borel space.
Let F ⊆ Σ be countable and assume S ∈ F . Then
Σ(R(F)) = σ(F).

The following lemma provides a general framework
to prove that a logic characterizes bisimulation. In fact
we have used it to prove that less expressive logics
characterize traditional bisimulation in some restricted
NLMPs [9].

Lemma 17: Let (S, Σ, T ) be a NLMP with (S, Σ)
being an analytic Borel space. Let L′ be a logic s.t.
(i) L′ contains operators 4 and ∧ with the usual
semantics; (ii) for every formula φ ∈ L′, !φ" is
Σ-measurable; (iii) the set of all formulas in L′ is
denumerable; and (iv) for every s R(L′) t and every
µ ∈ Ta(s) there exists µ′ ∈ Ta(t) such that ∀φ ∈
L′, µ(!φ") = µ′(!φ"). Then, two logically equivalent
states s, t are traditionally bisimilar.

Proof: Let F = {!φ" | φ ∈ L′}. Because of
(i), !4" = S and !φ1" ∩ !φ2" = !φ1 ∧ φ2". Hence
F forms a π-system. Because of (iv), µ, µ′ agree in
F and, by [2, Thm. 3.3], they also agree in σ(F).
Notice that hypotheses of Theorem 16 are met, i.e.,
Σ is analytic, F ⊆ Σ is countable (by (ii) and (iii))
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such that S ∈ F (by (i)), and R(L′) equals R(F).
Therefore, by Theorem 16, σ(F) = Σ(R(L′)), which
implies that µ and µ′ agree in Σ(R(L′)). Since R(L′)
is symmetric, R(L′) is a traditional bisimulation.
Notice that Lemma 17 holds for any logic fulfilling

the hypothesis, in particular it should encode the trans-
fer property of the bisimulation and may not contain
negation. We already know that Lf has operators4 and
∧, is denumerable, and that each formula is interpreted
in a Σ-measurable set. In the following, we show that
the transfer property can be encoded by using the
modality.
Lemma 18: Let (S, Σ, T ) be an image finite NLMP

(i.e. Ta(s) is finite for all a ∈ L, s ∈ S). Then for every
pair of states such that s R(Lf) t and µ ∈ Ta(s), there
is a µ′ ∈ Ta(t) such that ∀φ ∈ Lf , µ(!φ") = µ′(!φ").

Proof: Suppose towards a contradiction that there
are s, t with s R(Lf) t and there is a µ ∈ Ta(s),
such that for all µ′

i ∈ Ta(t) there is a formula
φi ∈ Lf with µ(!φi") ,= µ′

i(!φi"). Since Ta(t) is
finite, there are at most n different µ′

i. We can choose
()i ∈ {>, <}, qi ∈ Q ∩ [0, 1] accordingly to make
µ(!φi") ()i qi ()i µ′

i(!φi"). Take ψ = 〈a〉[ "#iqi
φi]ni=1.

Then s ∈ !ψ" but t /∈ !ψ" contradicting s R(Lf ) t.
So, finally, we can state the following theorem
Theorem 19: Let (S, Σ, T ) be an image finite

NLMP with (S, Σ) being analytic. For all s, t ∈ S,

s ∼t t ⇔ s ∼ t ⇔ s R(Lf) t

where s ∼t t denotes that there is a traditional
bisimulation R, s.t. s R t.

Proof: s ∼t t ⇒ s ∼ t (by Theorem 7) ⇒
s R(L) t (by Theorem 15) ⇒ s R(Lf) t (because
Lf ⊆ L) ⇒ s ∼t t (by Lemmas 17 and 18).

5. Concluding remarks

In order to define a process theory that permits
the verification of compositionally modeled systems
against simple (may be nondeterministic) specifica-
tions, it is necessary to have available a semantic
relation that allows for abstraction such as weak
bisimulation. In this setting, internal nondeterminism
is crucial.
In this paper we introduced the model of nonde-

terministic labeled Markov processes that allows for
the modeling of continuous probabilistic systems with
internal nondeterminism. Contrarily to similar mod-
els [4], [5], [7], [12], [13], [15], NLMPs are defined
to have a measure theoretic structure. In particular,
we require that the transition relation is a measurable
function that maps on measurable sets. This was de-
vised so that it is possible to build the rest of the

theory (particularly event bisimulation and logic, but
also schedulers are definable). We have shown that
NLMPs extend naturally LMPs. For the definition of
the transition and the development of the whole work,
Def. 4 is crucial, as it provides the foundation for
dealing with nondeterminism.

As a first step towards the desired process theory,
we gave different definitions for the bisimulation.We
proposed three possible generalizations of the two
bisimulations on LMPs. The event bisimulation re-
sponds exactly to the same definition principle both
in LMP and NLMP. Instead, the state bisimulation in
LMPs generalizes to NLMPs as state bisimulation and
as traditional bisimulation. We know that traditional
bisimulation is finer than state bisimulation and, in
Theorems 7 and 8, we gave sufficient conditions un-
der which they agree. However, we do not know if
they agree in general. Notice that the proofs of these
theorems lie on singling out a particular distribution
through a denumerable intersection of generator sets.
Because of this observation, we are considering to
restrict to standard Borel spaces to better understand
the relation between the two bisimulations.

We also gave a logical characterization of event
bisimulation (Theorem 13). Such logic (L) can be seen
as a revision of the one introduced by [24] in a discrete
probabilistic setting. Formulas in our setting belong
to two different classes: state formulas and measure
formulas. Notice that negation and infinitary (but de-
numerable) disjunction (or conjunction) is only present
on the second class, meaning that the complexity of the
model lies precisely on the internal nondeterminism.

A consequence of the characterization is that the
logic is sound for state and traditional bisimulations
(Theorem 15). We do not have any evidence that sug-
gests that logical equivalence (and hence event bisim-
ulation) agrees or disagrees with state or traditional
bisimulation in general. However, for the restricted
case of image finite NLMPs running on analytic Borel
spaces, all equivalences coincide (Theorem 19). Notice
that the logic we used to show such equivalence is in
fact a sublogic of L which has already appeared in a
preliminary work [9].

In case that the bisimulations turn out not to be
equivalent, the natural definition of the logic L sug-
gests that event bisimulation is the most appropriate
definition of all, provided one accepts that transition
functions should be indeed measurable on the σ-
algebra H(∆(Σ)).

Notice that the conditions of Lemma 17 also points
to a possible restriction to standard Borel spaces, a
setting in which the three bisimulation may agree.
Confining to standard Borel spaces is not as restricting

19

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on January 14, 2010 at 06:37 from IEEE Xplore.  Restrictions apply. 



as it seems since most natural problems arise in this
setting. For example, we have shown elsewhere that
the underlying semantics of stochastic automata [12] in
terms of NLMP meets most of the restrictions required
in this article: it runs on standard Borel spaces and it
is image finite. We recall that stochastic automata and
similar models are used to give semantics to stochastic
process algebras and specification languages [3]–[5],
[12], [13, etc.] which, in turn, are used to model dy-
namic systems. Moreover, LMP-like models restricted
to standard Borel spaces have been studied [17].

At the moment, we are busy on the study of sched-
ulers for NLMPs and probabilistic trace semantics.
This will allow us to contrast the two local behavioral
equivalences, state and traditional bisimulation. It is
expected that at least one of them implies a global be-
havioral equivalence, like probabilistic trace equality.
Schedulers would also let us define probabilistic weak
transitions and their related bisimulations.

Acknowledgments:. We thank Ignacio Viglizzo for
fruitful discussions. In particular he pointed out the
connection of Def. 4 to hit-and-miss topologies.
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