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Abstract. This paper presents a novel technique for counterexample
generation in probabilistic model checking of Markov chains and Markov
Decision Processes. (Finite) paths in counterexamples are grouped to-
gether in witnesses that are likely to provide similar debugging infor-
mation to the user. We list five properties that witnesses should satisfy
in order to be useful as debugging aid: similarity, accuracy, originality,
significance, and finiteness. Our witnesses contain paths that behave sim-
ilarly outside strongly connected components.

Then, we show how to compute these witnesses by reducing the prob-
lem of generating counterexamples for general properties over Markov
Decision Processes, in several steps, to the easy problem of generating
counterexamples for reachability properties over acyclic Markov chains.

1 Introduction

Model checking is an automated technique that, given a finite-state model of a
system and a property stated in an appropriate logical formalism, systematically
checks the validity of this property. Model checking is a general approach and is
applied in areas like hardware verification and software engineering.

Nowadays, the interaction geometry of distributed systems and network pro-
tocols calls for probabilistic, or more generally, quantitative estimates of, e.g.,
performance and cost measures. Randomized algorithms are increasingly utilized
to achieve high performance at the cost of obtaining correct answers only with
high probability. For all this, there is a wide range of models and applications in
computer science requiring quantitative analysis. Probabilistic model checking
allows to check whether or not a probabilistic property is satisfied in a given
model, e.g., “Is every message sent successfully received with probability greater
or equal than 0.99?”.

A major strength of model checking is the possibility of generating diag-
nostic information in case the property is violated. This diagnostic informa-
tion is provided through a counterexample showing an execution of the model
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that invalidates the property under verification. Besides the immediate feed-
back in model checking, counterexamples are also used in abstraction-refinement
techniques [CGJ+00], and provide the foundations for schedule derivation
(see, e.g., [BLR05]).

Although counterexample generation was studied from the very beginning in
most model checking techniques, this has not been the case for probabilistic
model checking. Only recently [AHL05, AD06, AL06, HK07a, HK07b, AL07]
attention was drawn to this subject,fifteen years after the first studies on prob-
abilistic model checking. Contrarily to other model checking techniques, coun-
terexamples in this setting are not given by a single execution path. Instead,
they are sets of executions of the system satisfying a certain undesired property
whose probability mass is higher than a given bound. Since counterexamples are
used as a diagnostic tool, previous works on counterexamples have presented
them as sets of finite paths with probability large enough. We refer to these
sets as representative counterexamples. Elements of representative counterexam-
ples with high probability have been considered the most informative since they
contribute mostly to the property refutation.

A challenge in counterexample generation for probabilistic model checking is
that (1) representative counterexamples are very large (often infinite), (2) many
of its elements have very low probability (which implies that are very distant
from the counterexample), and (3) that elements can be extremely similar to
each other (consequently providing similar diagnostic information). Even worse,
(4) sometimes the finite paths with highest probability do not indicate the most
likely violation of the property under consideration.

For example, look at the Markov chain D in Figure 1. The property D |=≤0.5 ♦ψ
stating that execution reaches a state satisfying ψ (i.e., reaches s3 or s4) with
probability lower or equal than 0.5 is violated (since the probability of reach-
ing ψ is 1). The left hand side of table in Figure 2 lists finite paths reaching ψ
ranked according to their probability. Note that finite paths with highest prob-
ability take the left branch in the system, whereas the right branch in itself has
higher probability, illustrating Problem 4. To adjust the model so that it does
satisfy the property (bug fixing), it is not sufficient to modify the left hand side
of the system alone; no matter how one changes the left hand side, the proba-
bility of reaching ψ remains at least 0.6. Furthermore, the first six finite paths
provide similar diagnostic information: they just make extra loops in s1. This
is an example of Problem 3. Additionally, the probability of every single finite
path is far below the bound 0.5, making it unclear if a particular path is impor-
tant; see Problem 2 above. Finally, the (unique) counterexample for the property
D |=

<1 ♦ψ consists of infinitely many finite paths (namely all finite paths of D);
see Problem 1. To overcome these problems, we partition a representative coun-
terexample into sets of finite paths that follow a similar pattern. We call these
sets witnesses. To ensure that witnesses provide valuable diagnostic information,
we desire that the set of witnesses that form a counterexample satisfies several
properties: two different witnesses should provide different diagnostic informa-
tion (solving Problem 3) and elements of a single witness should provide similar
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s0

s1 s2

s3

ψ

s4

ψ

0,5 0,99

0,4 0,6

0,5 0,01

Fig. 1. Markov chain

Single paths Witnesses

Rank F. Path Prob Witness Mass

1 s0(s1)
1s3 0.2 [s0s2s4] 0.6

2 s0(s1)
2s3 0.1 [s0s1s3] 0.4

3 s0(s1)
3s3 0.05

4 s0(s1)
4s3 0.025

5 s0(s1)
5s3 0.0125

6 s0(s1)
6s3 0.00625

7 s0(s2)
1s4 0.006

8 s0(s2)
2s4 0.0059

9 s0(s2)
3s4 0.0058

...
...

...

Fig. 2. Comparison Table

diagnostic information, as a consequence witnesses have a high probability mass
(solving Problems 2 and 4), and the number of witnesses of a representative
counterexample should be finite (solving Problem 1).

In our setting, witnesses consist of paths that behave the same outside strongly
connected components. In the example of Figure 1, there are two witnesses:
the set of all finite paths going right, represented by [s0s2s4] whose probability
(mass) is 0.6, and the set of all finite paths going left, represented by [s0s1s3]
with probability (mass) 0.4.

In this paper, we show how to obtain such sets of witnesses for bounded
probabilistic LTL properties on Markov Decision Processes (MDP). In fact, we
first show how to reduce this problem to finding witnesses for upper bounded
probabilistic reachability properties on discrete time Markov chains (MCs). The
major technical matters lie on this last problem to which most of the paper is
devoted.

In a nutshell, the process to find witnesses for the violation of D |=≤p ♦ψ,
with D being an MC, is as follows. We first eliminate from the original MC all
the “uninteresting” parts. This proceeds as the first steps of the model checking
process: make absorbing all states satisfying ψ, and all states that cannot reach
ψ, obtaining a new MC Dψ. Next reduce this last MC to an acyclic MC Ac(Dψ) in
which all strongly connected components have been conveniently abstracted with
a single probabilistic transition. The original and the acyclic MCs are related by
a mapping that, to each finite path in Ac(Dψ) (that we call rail), assigns a set of
finite paths behaving similarly in D (that we call torrent). This map preserves
the probability of reaching ψ and hence relates counterexamples in Ac(Dψ) to
counterexamples in D. Finally, counterexamples in Ac(Dψ) are computed by
reducing the problem to a k shortest path problem, as in [HK07a]. Because
Ac(Dψ) is acyclic, the complexity is lower than the corresponding problem in
[HK07a].

It is worth mentioning that our technique can also be applied to pCTL for-
mulas without nested path quantifiers.
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Organization of the paper. Section 2 presents the necessary background on
Markov chains (MC), Markov Decision Processes (MDP), and Linear Tempo-
ral Logic (LTL). Section 3 presents the definition of counterexamples and dis-
cusses the reduction from general LTL formulas to upper bounded probabilistic
reachability properties, and the extraction of the maximizing MC in an MDP.
Section 4 discusses desired properties of counterexamples. In Sections 5 and 6 we
introduce the fundamentals on rails and torrents, the reduction of the original
MC to the acyclic one, and our notion of significant diagnostic counterexamples.
Section 7 then presents the techniques to actually compute counterexamples. In
Section 8 we discuss related work and give final conclusions.

2 Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) constitute a formalism that combines non-
deterministic and probabilistic choices. They are an important model in cor-
porate finance, supply chain optimization, system verification and optimization.
There are many slightly different variants of this formalism such as action-labeled
MDPs [Bel57, FV97], probabilistic automata [SL95, SdV04]; we work with the
state-labeled MDPs from [BdA95].

Definition 2.1. Let S be a finite set. A probability distribution on S is a function
p : S → [0, 1] such that

∑
s∈S p(s) = 1. We denote the set of all probability

distributions on S by Distr(S). Additionally, we define the Dirac distribution on
an element s ∈ S as 1s, i.e., 1s(s) = 1 and 1s(t) = 0 for all t ∈ S \ {s}.
Definition 2.2. A Markov Decision Process (MDP) is a quadruple M =
(S, s0, L, τ), where

• S is the finite state space;
• s0 ∈ S is the initial state;
• L is a labeling function that associates to each state s ∈ S a set L(s) of

propositional variables that are valid in s;
• τ : S → ℘(Distr(S)) is a function that associates to each s ∈ S a non-empty

and finite subset of Distr(S) of probability distributions.

Definition 2.3. Let M = (S, s0, τ, L) be an MDP. We define a successor rela-
tion δ ⊆ S × S by δ � {(s, t)|∃π ∈ τ(s) . π(t) > 0} and for each state s∈S we
define the sets

Paths(M, s) � {t0t1t2 . . . ∈ Sω|t0 = s ∧ ∀n ∈ N . δ(tn, tn+1)} and

Paths�(M, s) � {t0t1 . . . tn ∈ S�|t0 = s ∧ ∀ 0 ≤ i < n . δ(tn, tn+1)}
of paths of D and finite paths of D respectively beginning at s. We usually
omit M from the notation; we also abbreviate Paths(M, s0) as Paths(M) and
Paths�(M, s0) as Paths�(M). For ω ∈ Paths(s), we write the (n+1)-st state
of ω as ωn. As usual, we let Bs ⊆ ℘(Paths(s)) be the Borel σ-algebra on the cones
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Fig. 3. Markov Decision Process

〈t0 . . . tn〉 � {ω ∈ Paths(s)|ω0 = t0 ∧ . . . ∧ ωn = tn}. Additionally, for a set of
finite paths Λ ⊆ Paths�(s), we define 〈Λ〉 �

⋃
σ∈Λ〈σ〉.

Figure 3 shows an MDP. Absorbing states (i.e., states s with τ(s) = {1s})
are represented by double lines. This MDP features a single nondeterministic
decision, to be made in state s0, namely π1 and π2.

Definition 2.4. Let M = (S, s0, τ, L) be an MDP, s ∈ S and A ⊆ S. We define
the sets of paths and finite paths reaching A from s as

Reach(M, s,A) � {ω ∈ Paths(M, s) | ∃i≥0.ωi ∈ A} and

Reach�(M, s,A) � {σ ∈ Paths�(M, s) | last(σ) ∈ A ∧ ∀i≤|σ|−1.σi �∈ A}
respectively. Note that Reach�(M, s,A) consists of those finite paths σ starting
on s reaching A exactly once, at the end of the execution. It is easy to check
that these sets are prefix free, i.e. contain finite paths such that none of them is
a prefix of another one.

2.2 Schedulers

Schedulers (also called strategies, adversaries, or policies) resolve the nondeter-
ministic choices in an MDP [PZ93, Var85, BdA95].

Definition 2.5. Let M = (S, s0, τ, L) be an MDP. A scheduler η on M is a
function from Paths�(M) to Distr(℘(Distr(S))) such that for all σ ∈ Paths�(M)
we have η(σ) ∈ Distr(τ(last(σ))). We denote the set of all schedulers on M by
Sch(M).

Note that our schedulers are randomized, i.e., in a finite path σ a sched-
uler chooses an element of τ(last(σ)) probabilistically. Under a scheduler η,
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the probability that the next state reached after the path σ is t, equals∑
π∈τ(last(σ)) η(σ)(π)·π(t). In this way, a scheduler induces a probability measure

on Bs as usual.

Definition 2.6. Let M = (S, s0, τ, L) be an MDP and η a scheduler on M. We
define the probability measure Prη as the unique measure on Bs0 such that for
all s0s1 . . . sn ∈ Paths�(M)

Prη(〈s0s1 . . . sn〉) =
n−1∏

i=0

∑

π∈τ(si)
η(s0s1 . . . si)(π) · π(si+1).

We now recall the notions of deterministic and memoryless schedulers.

Definition 2.7. Let M be an MDP and η a scheduler on M. We say that
η is deterministic if η(σ)(πi) is either 0 or 1 for all πi ∈ τ(last(σ)) and all
σ ∈ Paths�(M). We say that a scheduler is memoryless if for all finite paths
σ1, σ2 of M with last(σ1) = last(σ2) we have η(σ1) = η(σ2)

Definition 2.8. Let M be an MDP and Δ ∈ Bs0 . Then the maximal probability
Pr+ and minimal probability Pr− of Δ are defined by

Pr+(Δ) � sup
η∈Sch(M)

Prη(Δ) and Pr−(Δ) � inf
η∈Sch(M)

Prη(Δ).

A scheduler that attains Pr+(Δ) or Pr−(Δ) is called a maximizing or minimiz-
ing scheduler respectively.

2.3 Markov Chains

A (discrete time) Markov chain is an MDP associating exactly one probability
distribution to each state. In this way nondeterministic choices are not longer
allowed.

Definition 2.9 (Markov chain). Let M = (S, s0, τ, L) be an MDP. If |τ(s)| = 1
for all s ∈ S, then we say that M is a Markov chain (MC).

In order to simplify notation we represent probabilistic transitions on MCs by
means of a probabilistic matrix P instead of τ . Additionally, we denote by PrD,s
the probability measure induced by a MC D with initial state s and we abbreviate
PrD,s0 as PrD .

2.4 Linear Temporal Logic

Linear temporal logic (LTL) [MP91] is a modal temporal logic with modalities
referring to time. In LTL is possible to encode formulas about the future of
paths: a condition will eventually be true, a condition will be true until another
fact becomes true, etc.
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Definition 2.10. LTL is built up from the set of propositional variables V ,
the logical connectives ¬, ∧, and a temporal modal operator by the following
grammar:

φ ::= V | ¬φ | φ ∧ φ | φUφ.

Using these operators we define ∨,→,♦, and � in the standard way.

Definition 2.11. Let M = (S, s0, τ, L) be an MDP. We define satisfiability for
paths ω in M, propositional variables v ∈ V , and LTL formulas φ, γ inductively
by

ω |=M v ⇔ v ∈ L(ω0) ω |=M φ ∧ γ ⇔ ω |=M φ and ω |=M γ
ω |=M ¬φ⇔ not(ω |=M φ) ω |=M φUγ ⇔ ∃i≥0.ω↓i |=M γ and ∀0≤j<i.ω↓j |=M φ

where ω↓i is the i-th suffix of ω. When confusion is unlikely, we omit the subscript
M on the satisfiability relation.

Definition 2.12. Let M be an MDP. We define the language SatM(φ) associ-
ated to an LTL formula φ as the set of paths satisfying φ, i.e. SatM(φ) � {ω ∈
Paths(M) | ω |= φ}. Here we also generally omit the subscript M.

We now define satisfiability of an LTL formula φ on an MDP M. We say that
M satisfies φ with probability at most p (M |=≤p φ) if the probability of getting
an execution satisfying φ is at most p.

Definition 2.13. Let M be an MDP, φ an LTL formula and p ∈ [0, 1]. We
define |=≤p and |=≥p by

M |=≤p φ⇔ Pr+(Sat(φ)) ≤ p,

M |=≥p φ⇔ Pr−(Sat(φ)) ≥ p.

We define M |=
<p
φ and M |=

>p
φ in a similar way. In case the MDP is fully

probabilistic, i.e., an MC, the satisfiability problem is reduced to M |=
��p

φ ⇔
PrM(Sat(φ)) �� p, where ��∈ {<,≤, >,≥}.

3 Counterexamples

In this section, we define what counterexamples are and how the problem of
finding counterexamples to a general LTL property over Markov Decision Pro-
cesses reduces to finding counterexamples to reachability problems over Markov
chains.

Definition 3.1 (Counterexamples). Let M be an MDP and φ an LTL for-
mula. A counterexample to M |=≤p φ is a measurable set C ⊆ Sat(φ) such that
Pr+(C) > p. Counterexamples to M |=<p φ are defined similarly.
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Counterexamples to M |=
>p
φ and M |=≥p φ cannot be defined straightforwardly

as it is always possible to find a set C ⊆ Sat(φ) such that Pr−(C) ≤ p or
Pr−(C) < p, note that the empty set trivially satisfies it. Therefore, the best
way to find counterexamples to lower bounded probabilities is to find counterex-
amples to the dual properties M |=

<1−p¬φ and M |=≤1−p¬φ. That is, while for
upper bounded probabilities, a counterexample is a set of paths satisfying the
property with mass probability beyond the bound, for lower bounded probabili-
ties the counterexample is a set of paths that does not satisfy the property with
sufficient probability.

s0

s1 s2 s3

s4

{v}
s5

{v}

π1 π2

0,6 0,2

0,7

0,5 0,99

0,5 0,01

0,4 0,1

Fig. 4

Example 1. Consider the MDP M of Fig-
ure 4 and the LTL formula ♦v. It is
easy to check that M �|=<1 ♦v. The set
C = Sat(♦v) = {ρ ∈ Paths(s0)|∃i≥0.ρ =
s0(s1)i(s4)ω} ∪ {ρ ∈ Paths(s0)|∃i≥0.ρ =
s0(s3)i(s5)ω} is a counterexample. Note
that Prη(C) = 1 where η is any determin-
istic scheduler on M satisfying η(s0) = π1.

LTL formulas are actually checked by re-
ducing the model checking problem to a
reachability problem [Alf97]. For checking
upper bounded probabilities, the LTL for-
mula is translated into an equivalent de-
terministic Rabin automaton and composed
with the MDP under verification. On the
obtained MDP, the set of states forming ac-
cepting end components (SCC that traps
accepting conditions with probability 1) are identified. The maximum proba-
bility of the LTL property on the original MDP is the same as the maximum
probability of reaching a state of an accepting end component in the final MDP.
Hence, from now on we will focus on counterexamples to properties of the form
M |=≤p ♦ψ or M |=

<p
♦ψ, where ψ is a propositional formula, i.e., a formula

without temporal operators.
In the following, it will be useful to identify the set of states in which a

propositional property is valid.

Definition 3.2. Let M be an MDP. We define the state language SatM(ψ)
associated to a propositional formula ψ as the set of states satisfying ψ, i.e.,
SatM(ψ) � {s ∈ S | s |= ψ}, where |= has the obvious satisfaction meaning for
states. As usual, we generally omit the subscript M.

We will show now that, in order to find a counterexample to a property in an
MDP with respect to an upper bound, it suffices to find a counterexample for the
MC induced by the maximizing scheduler. The maximizing scheduler turns out
to be deterministic and memoryless [BdA95]; consequently the induced Markov
chain can be easily extracted from the MDP as follows.
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Definition 3.3. Let M = (S, s0, τ, L) be an MDP and η a deterministic mem-
oryless scheduler. Then we define the MC induced by η as Mη = (S, s0,Pη, L)
where Pη(s, t) = (η(s))(t) for all s, t ∈ S.

Now we state that finding counterexamples to upper bounded probabilistic reach-
ability LTL properties on MDPs can be reduced to finding counterexamples to
upper bounded probabilistic reachability LTL properties on MCs.

Theorem 3.4. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1].
Then, there is a maximizing (deterministic memoryless) scheduler η such that
M |=≤p ♦ψ ⇔ Mη |=≤p ♦ψ. Moreover, if C is a counterexample to Mη |=≤p ♦ψ
then C is also a counterexample to M |=≤p ♦ψ.

Note that η can be computed by solving a linear minimization problem [BdA95].
See Section 7.1.

4 Representative Counterexamples, Partitions and
Witnesses

The notion of counterexample from Definition 3.1 is very broad: just an arbi-
trary (measurable) set of paths with high enough mass probability. To be useful
as a debugging tool (and in fact to be able to present the counterexample to a
user), we need counterexamples with specific properties. We will partition coun-
terexamples (or rather, representative counterexamples) in witnesses and list five
informal properties that we consider valuable in order to increase the quality of
witnesses as a debugging tool.

We first note that for reachability properties it is sufficient to consider coun-
terexamples that consist of finite paths.

Definition 4.1 (Representative counterexamples). Let M be an MDP, ψ
a propositional formula and p ∈ [0, 1]. A representative counterexample to
M |=≤p ♦ψ is a set C ⊆ Reach�(M, Sat(ψ)) such that Pr+(〈C〉) > p. We de-
note the set of all representative counterexamples to M |=≤p ♦ψ by R(M, p, ψ).

Theorem 4.2. Let M be an MDP, ψ a propositional formula and p ∈ [0, 1]. If
C is a representative counterexample to M |=≤p ♦ψ, then 〈C〉 is a counterexample
to M |=≤p ♦ψ. Furthermore, there exists a counterexample to M |=≤p ♦ψ if and
only if there exists a representative counterexample to M |=≤p ♦ψ.

Following [HK07a], we present the notions of minimum counterexample, strongest
evidence and most indicative counterexamples.

Definition 4.3 (Minimum counterexample). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. We say that C ∈ R(D, p, ψ) is a minimum counterexample
if |C| ≤ |C′|, for all C′ ∈ R(D, p, ψ).

Definition 4.4 (Strongest evidence). Let D be an MC, ψ a propositional
formula and p ∈ [0, 1]. A strongest evidence to D �|=≤p ♦ψ is a finite path
σ ∈ Reach�(D, Sat(ψ)) such that PrD (〈σ〉) ≥ PrD (〈ρ〉), for all ρ ∈
Reach�(D, Sat(ψ)).
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Definition 4.5 (Most indicative counterexample). Let D be an MC, ψ a
propositional formula and p ∈ [0, 1]. We call C ∈ R(D, p, ψ) a most indicative
counterexample if it is minimum and PrD (〈C〉) ≥ PrD (〈C′〉), for all minimum
counterexamples C′ ∈ R(D, p, ψ).

Unfortunately, very often most indicative counterexamples are very large (even
infinite), many of its elements have insignificant measure and elements can be
extremely similar to each other (consequently providing the same diagnostic in-
formation). Even worse, sometimes the finite paths with highest probability do
not exhibit the way in which the system accumulates higher probability to reach
the undesired property (and consequently where an error occurs with higher
probability). For these reasons, we are of the opinion that representative coun-
terexamples are still too general in order to be useful as feedback information.
We approach this problem by refining a representative counterexample into sets
of finite paths following a “similarity” criteria (introduced in Section 5). These
sets are called witnesses of the counterexample.

Recall that a set Y of nonempty sets is a partition of X if the elements of Y
cover X and are pairwise disjoint. We define counterexample partitions in the
following way.

Definition 4.6 (Counterexample partitions and witnesses). Let M be an MDP,
ψ a propositional formula, p ∈ [0, 1], and C a representative counterexample
to M |=≤p ♦ψ. A counterexample partition WC is a partition of C. We call the
elements of WC witnesses.

Since not every partition generates useful witnesses (from the debugging per-
spective), we now state five informal properties that we consider valuable in
order to improve the diagnostic information provided by witnesses. In Section 7
we show how to partition the representative counterexample in order to obtain
witnesses satisfying most of these properties.

Similarity: Elements of a witness should provide similar debugging infor-
mation.
Accuracy: Witnesses with higher probability should exhibit evolutions of
the system with higher probability of containing errors.
Originality: Different witnesses should provide different debugging infor-
mation.
Significance: Witnesses should be as closed to the counterexample as pos-
sible (their mass probability should be as closed as possible to the bound p).
Finiteness: The number of witnesses of a counterexample partition should
be finite.

5 Rails and Torrents

As argued before we consider that representative counterexamples are excessively
general to be useful as feedback information. Therefore, we group finite paths of
a representative counterexample in witnesses if they are “similar enough”. We
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will consider finite paths that behave the same outside SCCs of the system as
providing similar feedback information.

In order to formalize this idea, we first reduce the original MC D to an acyclic
MC preserving reachability probabilities. We do so by removing all SCCs K of
D keeping just input states of K. In this way, we get a new acyclic MC denoted
by Ac(D). The probability matrix of the Markov chain relates input states of
each SCC to its output states with the reachability probability between these
states in D. Secondly, we establish a map between finite paths σ in Ac(D) (rails)
and sets of paths Wσ in D (torrents). Each torrent contains finite paths that are
similar, i.e., behave the same outside SCCs. We conclude the section showing
that the probability of σ is equal to the mass probability of Wσ.

Reduction to Acyclic Markov Chains

Consider an MC D = (S, s0,P , L). Recall that a subset K ⊆ S is called strongly
connected if for every s, t ∈ K there is a finite path from s to t. Additionally K is
called a strongly connected component (SCC) if it is a maximally (with respect
to ⊆) strongly connected subset of S.

Note that every state is a member of exactly one SCC of D (even those
states that are not involved in cycles, since the trivial finite path s connects s
to itself). From now on we let SCC� be the set of non trivial strongly connected
components of an MC, i.e., those composed of more than one state.

A Markov chain is called acyclic if it contains only trivial SCCs. Note that
an acyclic Markov chain still has absorbing states.

Definition 5.1 (Input and Output states). Let D = (S, s0,P , L) be an MC.
Then, for each SCC� K of D, we define the sets InpK ⊆ S of all states in K
that have an incoming transition from a state outside of K and OutK ⊆ S of all
states outside of K that have an incoming transition from a state of K in the
following way

InpK � {t ∈ K | ∃ s ∈ S \ K .P(s, t) > 0},
OutK � {s ∈ S \ K | ∃ t ∈ K .P(t, s) > 0}.

We also define for each SCC� K an MC related to K as DK �
(K∪OutK, sK,PK, LK) where sK is any state in InpK, LK(s) � L(s), and
PK(s, t) is equal to P(s, t) if s ∈ K and equal to 1s otherwise. Additionally,
for every state s involved in non trivial SCCs we define SCC+

s as DK, where K
is the SCC� of D such that s ∈ K.

Now we are able to define an acyclic MC Ac(D) related to D.
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Definition 5.2. Let D = (S, s0,P , L) be a MC. We define Ac(D) �
(S′, s0,P ′, L′) where

• S′ �

Scom
︷ ︸︸ ︷

S \
⋃

K∈SCC�

K
⋃

Sinp
︷ ︸︸ ︷⋃

K∈SCC�

InpK,

• L′ � L|S′ ,

• P ′(s, t) �

⎧
⎪⎪⎨

⎪⎪⎩

P(s, t) if s ∈ Scom,
PrD,s(Reach(SCC+

s , s, {t})) if s ∈ Sinp ∧ t ∈ OutSCC+
s
,

1 if s ∈ Sinp ∧ ∅ = OutSCC+
s
∧ t = s,

0 otherwise.

Note that Ac(D) is indeed acyclic.

Example 2. Consider the MC D of Figure 5(a). The strongly connected com-
ponents of D are K1 � {s1, s3, s4, s7}, K2 � {s5, s6, s8} and the singletons
{s0}, {s2}, {s9}, {s10}, {s11}, {s12}, {s13}, and {s14}. The input states of
K1 are InpK1

= {s1} and its output states are OutK1 = {s9, s10}. For K2,
InpK2

= {s5, s6} and OutK2 = {s11, s14}. The reduced acyclic MC of D is shown
in Figure 5(b).
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Fig. 5

Rails and Torrents

We now relate (finite) paths in Ac(D) (rails) to sets of paths in D (torrents).

Definition 5.3 (Rails). Let D be an MC. A finite path σ ∈ Paths�(Ac(D)) will
be called a rail of D.

Consider a rail σ, i.e., a finite path of Ac(D). We will use σ to represent those
paths ω of D that behave “similar to” σ outside SCCs of D. Naively, this means
that σ is a subsequence of ω. There are two technical subtleties to deal with:
every input state in σ must be the first state in its SCC in ω (freshness) and
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every SCC visited by ω must be also visited by σ (inertia) (see Definition 5.5).
We need these extra conditions to make sure that no path ω behaves “similar
to” two distinct rails (see Lemma 5.7).

Recall that given a finite sequence σ and a (possible infinite) sequence ω, we
say that σ is a subsequence of ω, denoted by σ � ω, if and only if there exists a
strictly increasing function f : {0, 1, . . . , |σ| − 1} → {0, 1, . . . , |ω| − 1} such that
∀0≤i<|σ|.σi = ωf(i). If ω is an infinite sequence, we interpret the codomain of f
as N. In case f is such a function we write σ �f ω.

Definition 5.4. Let D = (S, s0,P , L) be an MC. On S we consider the equiva-
lence relation ∼D satisfying s ∼D t if and only if s and t are in the same strongly
connected component. Again, we usually omit the subscript D from the notation.

The following definition refines the notion of subsequence, taking care of the two
technical subtleties noted above.

Definition 5.5. Let D = (S, s0,P , L) be an MC, ω a (finite) path of D, and
σ ∈ Paths�(Ac(D)) a finite path of Ac(D). Then we write σ � ω if there exists
f : {0, 1, . . . , |σ| − 1} → N such that σ �f ω and

∀0≤j<f(i) : ωf(i) �∼ ωj ; for all i = 0, 1, . . . |σ| − 1, [Freshness property ]
∀f(i)<j<f(i+1) : ωf(i) ∼ ωj ; for all i = 0, 1, . . . |σ| − 2. [Inertia property ]

In case f is such a function we write σ �f ω.

Example 3. Let D = (S, s0,P , L) be the MC of Figure 5(a) and take σ =
s0s2s6s14. Then for all i ∈ N we have σ �fi ωi where ωi = s0s2s6(s5s8s6)is14
and fi(0) � 0, fi(1) � 1, fi(2) � 2, and fi(3) � 3 + 3i. Additionally,
σ �� s0s2s5s8s6s14 since for all f satisfying σ �f s0s2s5s8s6s14 we must have
f(2) = 5; this implies that f does not satisfy the freshness property. Finally,
note that σ �� s0s2s6s11s14 since for all f satisfying σ �f s0s2s6s11s14 we must
have f(2) = 2; this implies that f does not satisfy the inertia property.

We now give the formal definition of torrents.

Definition 5.6 (Torrents). Let D = (S, s0,P , L) be an MC and σ a sequence
of states in S. We define the function Torr by

Torr(D, σ) � {ω ∈ Paths(D) | σ � ω}.
We call Torr(D, σ) the torrent associated to σ.

We now show that torrents are disjoint (Lemma 5.7) and that the probability
of a rail is equal to the probability of its associated torrent (Theorem 5.10).
For this last result, we first show that torrents can be represented as the disjoint
union of cones of finite paths. We call these finite paths generators of the torrent
(Definition 5.8).

Lemma 5.7. Let D be an MC. For every σ, ρ ∈ Paths�(Ac(D)) we have

σ �= ρ⇒ Torr(D, σ) ∩ Torr(D, ρ) = ∅
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Definition 5.8 (Torrent Generators). Let D be an MC. Then we define for
every rail σ ∈ Paths�(Ac(D)) the set

TorrGen(D, σ) � {ρ ∈ Paths�(D) | ∃f : σ �f ρ ∧ f(|σ| − 1) = |ρ| − 1}.
In the example from the Introduction (see Figure 1), s0s1s3 and s0s2s4 are rails.
Their associated torrents are, respectively, {s0sn1 sω3 | n ∈ N

∗} and {s0sn2 sω4 | n ∈
N

∗} (note that s3 and s4 are absorbing states), i.e. the paths going left and the
paths going right. The generators of the first torrent are {s0sn1 s3 | n ∈ N

∗} and
similarly for the second torrent.

Lemma 5.9. Let D be an MC and σ ∈ Paths�(Ac(D)) a rail of D. Then we
have

Torr(D, σ) =
⊎

ρ∈TorrGen(D,σ)

〈ρ〉.

Theorem 5.10. Let D be an MC. Then for every rail σ ∈ Paths�(Ac(D)) we
have

Pr
Ac(D)

(〈σ〉) = PrD (Torr(D, σ)).

6 Significant Diagnostic Counterexamples

So far we have formalized the notion of paths behaving similarly (i.e., behaving
the same outside SCCs) in an MC D by removing all SCC of D, obtaining Ac(D).
A representative counterexample to Ac(D) |=≤p ♦ψ gives rise to a representative
counterexample to D |=≤p ♦ψ in the following way: for every finite path σ in
the representative counterexample to Ac(D) |=≤p ♦ψ the set TorrGen(D, σ) is a
witness, then we obtain the desired representative counterexample to D |=≤p♦ψ
by taking the union of these witnesses.

Before giving a formal definition, there is still one technical issue to resolve: we
need to be sure that by removing SCCs we are not discarding useful information.
Because torrents are built from rails, we need to make sure that when we discard
SCCs, we do not discard rails that reach ψ.

We achieve this by first making states satisfying ψ absorbing. Additionally,
we make absorbing states from which it is not possible to reach ψ. Note that
this does not affect counterexamples.

Definition 6.1. Let D = (S, s0,P , L) be an MC and ψ a propositional formula.
We define the MC Dψ � (S, s0,Pψ, L), with

Pψ(s, t) �

⎧
⎪⎪⎨

⎪⎪⎩

1 if s �∈ Sat♦(ψ) ∧ s = t,
1 if s ∈ Sat(ψ) ∧ s = t,
P(s, t) if s ∈ Sat♦(ψ) − Sat(ψ),
0 otherwise,

where Sat♦(ψ) � {s ∈ S | PrD,s(Reach(D, s, Sat(ψ))) > 0} is the set of states
reaching ψ in D.
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The following theorem shows the relation between paths, finite paths, and prob-
abilities of D, Dψ, and Ac(Dψ). Most importantly, the probability of a rail σ
(in Ac(Dψ)) is equal to the probability of its associated torrent (in D) (item 5
below) and the probability of ♦ψ is not affected by reducing D to Ac(Dψ) (item
6 below).

Note that a rail σ is always a finite path in Ac(Dψ), but that we can talk
about its associated torrent Torr(Dψ , σ) in Dψ and about its associated torrent
Torr(D, σ) in D. The former exists for technical convenience; it is the latter that
we are ultimately interested in. The following theorem also shows that for our
purposes, viz. the definition of the generators of the torrent and the probability
of the torrent, there is no difference (items 3 and 4 below).

Theorem 6.2. Let D = (S, s0,P , L) be an MC and ψ a propositional formula.
Then for every σ ∈ Paths�(Dψ)

1. Reach�(Dψ, s0, Sat(ψ)) = Reach�(D, s0, Sat(ψ)),
2. PrDψ

(〈σ〉) = PrD (〈σ〉),
3. TorrGen(Dψ , σ) = TorrGen(D, σ),
4. PrDψ

(Torr(Dψ, σ)) = PrD (Torr(D, σ)),
5. Pr

Ac(Dψ)
(〈σ〉) = PrD (Torr(D, σ)),

6. Ac(Dψ) |=≤p ♦ψ if and only if D |=≤p ♦ψ, for any p ∈ [0, 1].

Proof. Straightforward

Definition 6.3 (Torrent-Counterexamples). Let D = (S, s0,P , L) be an MC, ψ
a propositional formula, and p ∈ [0, 1] such that D �|=≤p ♦ψ. Let C be a represen-
tative counterexample to Ac(Dψ) |=≤p ♦ψ. We define the set

TorRepCount(C) � {TorrGen(D, σ) | σ ∈ C}.
We call the set TorRepCount(C) a torrent-counterexample of C. Note that this
set is a partition of a representative counterexample to D |=≤p ♦ψ. Additionally,
we denote by Rt(D, p, ψ) to the set of all torrent-counterexamples to D |=≤p ♦ψ,
i.e., {TorRepCount(C) | C ∈ R(Ac(D), p, ψ)}.
Theorem 6.4. Let D = (S, s0,P , L) be an MC, ψ a propositional formula,
and p ∈ [0, 1] such that D �|=≤p ♦ψ. Take C a representative counterexample to
Ac(Dψ) |=≤p ♦ψ. Then the set of finite paths

⊎
W∈TorRepCount(C)W is a repre-

sentative counterexample to D |=≤p ♦ψ.

Note that for each σ ∈ C we get a witness TorrGen(D, σ). Also note that the
number of rails is finite, so there are also only finitely many witnesses.

Following [HK07a], we extend the notions of minimum counterexamples and
strongest evidence.

Definition 6.5 (Minimum torrent-counterexample). Let D be an MC, ψ a
propositional formula and p ∈ [0, 1]. We say that Ct ∈ Rt(D, p, ψ) is a mini-
mum torrent-counterexample if |Ct| ≤ |C′

t|, for all C′
t ∈ Rt(D, p, ψ).
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Definition 6.6 (Strongest torrent-evidence). Let D be an MC, ψ a propo-
sitional formula and p ∈ [0, 1]. A strongest torrent-evidence to D �|=≤p ♦ψ is
a torrent Torr(D, σ) such that σ ∈ Paths�(Ac(Dψ)) and PrD(Torr(D, σ)) ≥
PrD(Torr(D, ρ)) for all ρ ∈ Paths�(Ac(Dψ)).

Now we define our notion of significant diagnostic counterexamples. It is the
generalization of most indicative counterexample from [HK07a] to our setting.

Definition 6.7 (Most indicative torrent-counterexample). Let D be an MC,
ψ a propositional formula and p ∈ [0, 1]. We call Ct ∈ Rt(D, p, ψ) a most
indicative torrent-counterexample if it is a minimum torrent-counterexample
and Pr(

⋃
T∈Ct〈T 〉) ≥ Pr(

⋃
T∈C′

t
〈T 〉) for all minimum torrent-counterexamples

C′
t ∈ Rt(D, p, ψ).

Note that in our setting, as in [HK07a], a minimal torrent-counterexample C
consists of the |C| strongest torrent-evidences.

By Theorem 6.4 it is possible to obtain strongest torrent-evidence and most
indicative torrent-counterexamples of an MC D by obtaining strongest evidence
and most indicative counterexamples of Ac(Dψ) respectively.

7 Computing Counterexamples

In this section we show how to compute most indicative torrent-counterexamples.
We also discuss what information to present to the user: how to present witnesses
and how to deal with overly large strongly connected components.

7.1 Maximizing Schedulers

The calculation of the maximal probability on a reachability problem can be
performed by solving a linear minimization problem [BdA95, dA97]. This min-
imization problem is defined on a system of inequalities that has a variable xi
for each different state si and an inequality

∑
j π(sj) · xj ≤ xi for each distribu-

tion π ∈ τ(si). The maximizing (deterministic memoryless) scheduler η can be
easily extracted out of such system of inequalities after obtaining the solution.
If p0, . . . , pn are the values that minimize

∑
i xi in the previous system, then η

is such that, for all si, η(si) = π whenever
∑

j π(sj) · pj = pi. In the following
we denote Psi [♦ψ] � xi.

7.2 Computing Most Indicative Torrent-Counterexamples

We divide the computation of most indicative torrent-counterexamples to
M |=≤p ♦ψ in three stages: pre-processing, SCC analysis, and searching.

Pre-processing stage. We first modify the original MC D by making all states
in Sat(ψ) ∪ S \ Sat♦(ψ) absorbing. In this way we obtain the MC Dψ from
Definition 6.1. Note that we do not have to spend additional computational
resources to compute this set, since Sat♦(ψ) = {s ∈ S | Ps[♦ψ] > 0} and hence
all required data is already available from the LTL model checking phase.
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SCC analysis stage. We remove all SCCs K of Dψ keeping just input states of
K, getting the acyclic MC Ac(Dψ) according to Definition 5.2.

To compute this, we first need to find the SCCs of Dψ. There exists several
well known algorithms to achieve this: Kosaraju’s, Tarjan’s, Gabow’s algorithms
(among others). We also have to compute the reachability probability from input
states to output states of every SCC. This can be done by using steady state
analysis techniques [Cas93].

Searching stage. To find most indicative torrent-counterexamples in D, we find
most indicative counterexamples in Ac(Dψ). For this we use the same approach
as [HK07a], turning the MC into a weighted digraph to replace the problem of
finding the finite path with highest probability by a shortest path problem. The
nodes of the digraph are the states of the MC and there is an edge between s
and t if P(s, t) > 0. The weight of such an edge is − log(P(s, t)).

Finding the most indicative counterexample in Ac(Dψ) is now reduced to
finding k shortest paths. As explained in [HK07a], our algorithm has to compute
k on the fly. Eppstein’s algorithm [Epp98] produces the k shortest paths in
general inO(m+n log n+k), wherem is the number of nodes and n the number of
edges. In our case, since Ac(Dψ) is acyclic, the complexity decreases to O(m+k).

7.3 Debugging Issues

Representative finite paths. What we have computed so far is a most indica-
tive counterexample to Ac(Dψ) |=≤p ♦ψ. This is a finite set of rails, i.e., a finite
set of paths in Ac(Dψ). Each of these paths σ represents a witness TorrGen(D, σ).
Note that this witness itself has usually infinitely many elements.

In practice, one has to display a witness to the user. The obvious way would
be to show the user the rail σ. This, however, may be confusing to the user as σ
is not a finite path of the original Markov Decision Process. Instead of presenting
the user with σ, we therefore show the user the finite path of TorrGen(D, σ) with
highest probability.

Definition 7.1. Let D be an MC, and σ ∈ Paths�(Ac(Dψ)) a rail of D. We
define the representant of Torr(D, σ) as

repTorr (D, σ) = repTorr

⎛

⎝
⊎

ρ∈TorrGen(D,σ)

〈ρ〉
⎞

⎠ � arg max
ρ∈TorrGen(D,σ)

Pr(〈ρ〉)

Note that given repTorr (D, σ) one can easily recover σ. Therefore, no informa-
tion is lost by presenting torrents as one of its generators instead of as a rail.

Expanding SCC. Note that in the Preprocessing stage, we reduced the size of
many SCCs of the system (and likely even completely removed some) by making
states in Sat(ψ)∪S \Sat♦(ψ) absorbing. However, It is possible that the system
still contains some very large strongly connected components. In that case, a
single witness could have a very large probability mass and one could argue
that the information presented to the user is not detailed enough. For instance,
consider the Markov chain of Figure 6 in which there is a single large SCC with
input state t and output state u.
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Fig. 6

The most indicative torrent-counterexample to the
property D |=≤0.9 ♦ψ is simply {TorrGen(stu)}, i.e., a sin-
gle witness with probability mass 1 associated to the rail
stu. Although this may seem uninformative, we argue that
it is more informative than listing several paths of the form
st · · ·u with probability summing up to, say, 0.91. Our
single witness counterexample suggests that the outgoing
transition to a state not reaching ψ was simply forgotten
in the design; the listing of paths still allows the possibility
that one of the probabilities in the whole system is simply
wrong.

Nevertheless, if the user needs more information to tackle bugs inside SCCs,
note that there is more information available at this point. In particular, for
every strongly connected component K, every input state s of K (even for every
state in K), and every output state t of K, the probability of reaching t from s
is already available from the computation of Ac(Dψ) during the SCC analysis
stage of Section 7.2.

8 Final Discussion

We have presented a novel technique for representing and computing counterex-
amples for nondeterministic and probabilistic systems. We partition a counterex-
ample in witnesses and state five properties that we consider valuable in order
to increase the utility of witnesses as a debugging tool: (similarity) elements of
a witness should provide similar debugging information; (originality) different
witnesses should provide different debugging information; (accuracy) witnesses
with higher probability should indicate system behavior more likely to contain
errors; (significance) probability of a witness should be relatively high; (finite-
ness) there should be finitely many witnesses. We achieve this by grouping finite
paths in a counterexample together in a witness if they behave the same outside
the strongly connected components.

Presently, some work has been done on counterexample generation techniques
for different variants of probabilistic models (Discrete Markov chains and Con-
tinues Markov chains) [AHL05, AL06, HK07a, HK07b]. In our terminology, these
works consider witnesses consisting of a single finite path. We have already dis-
cussed in the Introduction that the single path approach does not meet the
properties of accuracy, originality, significance, and finiteness.

Instead, our witness/torrent approach provides a high level of abstraction
of a counterexample. By grouping together finite paths that behave the same
outside strongly connected components in a single witness, we can achieve these
properties to a higher extent. Behaving the same outside strongly connected
components is a reasonable way of formalizing the concept of providing similar
debugging information. This grouping also makes witnesses significantly different
from each other: each witness comes from a different rail and each rail provides
a different way to reach the undesired property. Then each witness provides



Significant Diagnostic Counterexamples 147

original information. Of course, our witnesses are more significant than single
finite paths, because they are sets of finite paths. This also gives us more accuracy
than the approach with single finite paths, as a collection of finite paths behaving
the same and reaching an undesired condition with high probability is more likely
to show how the system reaches this condition than just a single path. Finally,
because there is a finite number of rails, there is also a finite number of witnesses.

Another key difference of our work with previous ones is that our technique
allows to generate counterexamples for probabilistic systems with nondetermin-
ism. However, a recent report [AL07] also considers counterexample generation
for MDPs. Their approach only extends to upper bounded pCTL formulas with-
out nested temporal operators. We would like to remark that our technique to
approach counterexample generation for MDPs completely differs from theirs.

Finally, we are not aware of any other work in the literature considering
counterexamples for probabilistic LTL model checking.

The authors would like to stress the important result of [HK07a], which pro-
vides a systematic characterization of counterexample generation in terms of
shortest paths problems. We use this result to generate counterexamples for the
acyclic Markov chains.

In the future we intend to implement a tool to generate our significant diagnos-
tic counterexamples; a very preliminary version has already been implemented.
There is still work to be done on improving the visualization of the witnesses,
in particular, when a witness captures a large strongly connected component.
Another direction is to investigate how this work can be extended to timed sys-
tems, either modeled with continuous time Markov chains or with probabilistic
timed automata.

Acknowledgement. The authors thank David Jansen for helpful comments on
an earlier version of this paper.
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