
From Stochastic Automata to Timed Automata:

Abstracting probability in a compositional
manner

(Extended Abstract)

Pedro R. D’Argenio

FaMAF, Universidad Nacional de Córdoba,
Ciudad Universitaria, 5000 Córdoba, Argentina

dargenio@famaf.unc.edu.ar

Abstract. We present a translation from stochastic automata [10, 8]
into timed automata with deadlines [5]. The translation abstracts prob-
abilities and preserves trace behaviour. Moreover, it is compositional in
the sense that the translation of the parallel composition of two stochastic
automata is equivalent to the parallel composition of the timed automata
resulting from the translation of each component.

1 Introduction

The last few years have witnessed a growing interest in combining formal meth-
ods with performance and reliability techniques, the reason being that systems,
like embedded systems or communication protocols, do not only require to be
functionally correct but also efficient. Approaches that combine qualitative and
quantitative analysis of system models have been addressed from many different
perspectives including process algebra and model checking (e.g. [1, 15, 16, 22, 12,
4, 8, 17, 6]). Thus, these models provide a framework both for functional analy-
sis and for obtaining performance and reliability measures of the system design
under consideration.

One such approach is based on stochastic automata. The stochastic automata
model [10, 8] is a variant of the automata model inspired by the so-called gener-
alised semi-Markov processes (GSMPs) [13] and timed automata [2]. Stochastic
automata are intended to describe timed systems in which the occurrence time
of an event is a random variable. Moreover, they provide an adequate framework
for composition and it serves as the underlying semantic model for the process
algebra [10, 8]. Stochastic automata properly contain stochastic models such
as continuous time (semi-)Markov chains and (semi-)Markov decision chains,
and a large class of GSMPs [8].

In its generality, stochastic automata are amenable to discrete event simula-
tion techniques as a tool to gather performance and reliability information. Al-
ternatively, restricted instances, such as continuous-time Markov chains, can be
used to apply analytical and numerical techniques. In [11, 8] we already showed

the potential use of stochastic automata both as a model for performance analy-
sis and as a model for verification. In this article we are concerned on developing
further in this last direction.

The timed automata model [2] has been adopted with large success for the
verification of real-time systems. Efficient techniques and tools have been de-
veloped and successfully used in many industrial-based case studies. Stochastic
automata can be seen as an extension of timed automata in which the occurrence
time of events is stochastic rather than non-deterministic. As a consequence one
might think that a timed automaton is an abstraction of stochastic automata,
in which stochastic information has been “forgotten”.

In this article, we formalise such an abstraction by translating stochastic
automata into timed automata preserving probable behaviour. More specifically,
the target of our translation is a variant of timed automata with deadlines [5].
The translation preserves (timed) trace behaviour in the sense that traces that
are likely to occur in the original stochastic automaton are possible in the trans-
lation timed automaton and vice-versa. To show adequacy of the translation, we
proceed in two steps. First, a probabilistic abstracted semantics is given to SA.
Such semantic preserves the probable executions of the probabilistic semantics.
The translation timed automata is then shown to define the same set of traces as
the probabilistic abstracted semantics. Moreover, we also show that this trans-
lation commutes with the parallel composition. That is, the translation of the
parallel composition of two stochastic automata is equivalent to the parallel com-
position of the timed automata resulting from the translation of each stochastic
automaton.

The advantage of the translation is to profit in the stochastic automata world
from the successful development in the timed automata world.

Outline of the Article. Section 2 introduces the basic concepts including prob-
abilistic and timed transition systems. In Section 3 the stochastic automata
model is defined together with its probabilistic behaviour as well as the prob-
ability abstracted behaviour. Section 4 recalls timed automata with deadlines.
The translation and its adequacy criteria are given in Section 5. The compo-
sitionality of the translation is proved in Section 6. Section 7 discusses related
work and the article concludes in Section 8.

2 Transition Systems

Probabilistic transition systems (PTS for short) are transition systems whose
transitions impose a probabilistic jump. More precisely, in a PTS, a transition
does not lead to a single state but to a probability space whose sample space
is a set of states. The model defined below deals with any kind of probability
space. It is a modification of the model introduced in [10, 8] and is basically a
generalisation of models that only deal with discrete probabilities, e.g. [23, 22].

A probability space is a tuple (Ω,F , P) where Ω is the sample space, F is a σ-
algebra containing subsets of Ω, and P is a probability measure on the measurable
space (Ω,F). If P is a probability space, we write ΩP , FP and PP for its sample

2

space, σ-algebra, and probability measure, respectively1. Let Prob(H) denote
the set of probability spaces P such that ΩP ⊆ H .

Definition 1. A probabilistic transition system (PTS for short) is a structure
PTS = (Σ,L,−→) where (1) Σ is a set of states, (2) L is a set of labels, and
(3) −→ ⊆ Σ × L × Prob(Σ) is the (probabilistic) transition relation. We write

σ
ℓ
−→ P whenever 〈σ, ℓ,P〉 ∈ −→ .

A probabilistic transition σ
ℓ
−→ P is said to be trivial if its probability space P

is trivial, i.e., if the sample space contains only one element. In this case we write

σ
ℓ
−→ σ′ provided ΩP = {σ′}. A (Labelled) Transition System (LTS for short) is

a PTS where all transitions are trivial. A Timed Probabilistic Transition System
is a PTS = (Σ,L,−→) where:

– The set of labels L is the disjoint union of a set A of actions and the set
IR>0 of positive real numbers intended to represent the passage of time.

– Transitions labelled with d ∈ IR>0 are trivial and called timed transitions.

– Timed transitions satisfy time additivity (∃σ′′. σ
d
−→ σ′′ d′

−−→ σ′ iff σ
d+d′

−−−−→ σ′)

and time determinism (σ
d
−→ σ′ ∧ σ

d
−→ σ′′ =⇒ σ′ = σ′′) [24].

A LTS that is also a timed PTS is called a Timed Transition System.

An execution fragment of a PTS is a path obtained by traversing the PTS. An
execution is a maximal path on PTS. A supported execution is an execution likely
to occur. More precisely, an execution fragment of PTS is a is a finite sequence

ξ ≡ σ0ℓ1σ1 . . . ℓnσn such that, for all 0 ≤ i < n, σi
ℓi+1

−−−→ Pi+1 for some Pi+1

with σi+1 ∈ ΩPi+1
. An execution of PTS is either a maximal execution fragment

(i.e. σn−→/) or an infinite sequence ρ ≡ σ0ℓ1σ1ℓ2σ2 . . . such that, for all i ≥ 0,

σi
ℓi+1

−−−→ Pi+1 for some Pi+1 with σi+1 ∈ ΩPi+1
. ρ is supported if in addition

every σi is in the support set of PPi

2. For a fragment or an execution ρ, let first(ρ)
and last(ρ) denote the first and last state in ρ, respectively; last(ρ) is not defined
if ρ is infinite. Provided last(ξ) = first(ρ), ξρ represents the concatenation of ξ
and ρ; in this case we say that ξ is a prefix of ξρ.

Let frags(PTS), execs(PTS), and supp execs(PTS) denote the set of all ex-
ecution fragments, all executions, and all supported executions of PTS, respec-
tively. Let frags(PTS, σ), execs(PTS, σ), and supp execs(PTS, σ) be their re-
spective subsets restricted to the sequences that start from σ. Notice that in the
context of LTSs, the sets of executions and supported executions are the same,
i.e., execs(LTS) = supp execs(LTS).

The probability measure of a set of executions depends on how non-determinism
is resolved which is done by a scheduler or adversary [23].

1 We assume the reader is familiar with the basics of probability and measure theory.
2 Recall that the support set of a probability measure is the smallest closed subset of

the sample space whose measure is 1.

3

Definition 2. A scheduler on a PTS is a function S : frags(PTS) → (−−→)

such that S(ξ) = last(ξ)
ℓ
−→ P for some ℓ ∈ L and P ∈ Prob(Σ) whenever they

exist (i.e. ξ is not maximal).

The set execs(PTS, S) ⊆ execs(PTS) of executions induced by a scheduler S

in PTS contains all the executions ρ ≡ σ0ℓ1σ1ℓ2σ2 . . . and for all 0 ≤ k < |ρ|,

S(σ0ℓ1σ1 . . . σk) = σk
ℓk+1

−−−−→ P and σk+1 ∈ ΩP for some P . Let execs(PTS, S, σ)
def
=

execs(PTS, S) ∩ execs(PTS, σ). We write execs(S) and execs(S, σ) instead of
execs(PTS, S) and execs(PTS, S, σ) if it is clear from the context.

Every scheduler S define a probability space on the executions of PTS as
follows. Given a state σ ∈ Σ, bcones(S, σ) is the smallest set containing all
subsets Ξ ⊆ execs(PTS) that can be defined inductively as follows:

1. Ξ = execs(S, σ), or

2. For S(σ) = σ
ℓ
−→ P there is a measurable set A ∈ FP and a function Ξ̂,

with Ξ̂(σ′) ∈ bcones(S/(σℓσ′), σ′) for all σ′ ∈ A, such that

Ξ = {(σℓσ′)ρ ∈ execs(S) | σ′ ∈ A ∧ ρ ∈ Ξ̂(σ′)}

where (S/ξ)(ρ)
def
= if last(ξ) = first(ρ) then S(ξρ) else S(ρ).

Every Ξ ∈ bcones(S, σ) is called a basic cone. Let F(bcones(S, σ)) be the σ-
algebra generated by all sets in bcones(S, σ). For every a scheduler S there is prob-
ability measure P S

σ on the measurable space (execs(S, σ),F(bcones(S, σ))). P S
σ is

defined as the unique probability measure such that for every Ξ ∈ bcones(S, σ)

P S

σ (Ξ) =

0 if Ξ ∩ execs(S, σ) = ∅

1 if Ξ = execs(S, σ)
∫

FP

f dPP if ∅ 6= Ξ ∩ execs(S, σ) 6= execs(S, σ) with

S(σ) = σ
ℓ
−→ P and f(σ′)

def
= P

S/(σℓσ′)
σ′ (Ξ/(σℓσ′))

where Ξ/ξ
def
= {ρ ∈ execs(S/ξ, last(ξ)) | ξρ ∈ Ξ}. (Clearly Ξ/ξ ∈ bcones(S/ξ, last(ξ))

if Ξ ∈ bcones(S,first(ξ)).)
Executions will be used as fundamentals in the main step to abstract from the

measure of a stochastic system. Once the probability measure is abstracted, we
will resort to non-probabilistic semantic relations that relate states of a transition
system according to their observable behaviour (see e.g. [19, 18]).

Let (Σ,L,−→) be a LTS. A relation R ⊆ Σ × Σ is a simulation if, for all

〈σ1, σ2〉 ∈ R, whenever σ1
ℓ
−→ σ′

1, there exists σ′
2 such that σ2

ℓ
−→ σ′

2 and
〈σ′

1, σ
′
2〉 ∈ R. σ1 is simulated by σ2, notation σ1 . σ2, if there is a simulation R

with 〈σ1, σ2〉 ∈ R. If R is a symmetric simulation, R is called bisimulation, and
in this case we denote σ1 ∼ σ2 whenever 〈σ1, σ2〉 ∈ R.

A sequence ℓ1, ℓ2, . . . , ℓn ∈ L∗, n ≥ 0, is a trace of a state σ in a LTS if there
is an execution σℓ1σ1ℓ2σ2 . . . σn−1ℓnσn ∈ execs(LTS, σ). The set of all traces of

4

a state σ is denoted by tr(σ). σ1 and σ2 are trace-equivalent, notation σ1 =tr σ2,
if they have the same set of traces, i.e., tr(σ1) = tr(σ2).

If σ1 and σ2 are states of LTS1 and LTS2 respectively, then σ1 ⊲⊳ σ2 (where
⊲⊳ is either ., ∼, =tr) whenever σ1 ⊲⊳ σ2 in the (disjoint) union of LTS1 and
LTS2.

It is known that two states that are bisimilar can simulate each other, and
that if a state σ1 can be simulated by σ2, i.e. σ1 . σ2, then tr(σ1) ⊆ tr(σ2).

3 Stochastic Automata

A stochastic automaton [10, 8] is a LTS extended with clock variables that can
be set set to 0 (in which case it becomes active) and check whether it reaches
a random value, in which moment it is terminated. Each clock x has associated
a random variable which takes a random value according to the probability
distribution function Fx. This random value is the termination value of clock x.
Thus, clock x may enable different transitions when it reaches the termination
value.

Definition 3. Let C be a set of clocks and A a set of action names. A stochastic
automaton (SA for short) is a tuple (LTS, hs) where LTS = (S,A,−→) is a
labelled transition system and hs ⊆ −→ × (℘(C) ×℘(C)) is a relation called

stochastic annotation. s
a,Ct,Cr- s′ denotes 〈s

a
−→ s′, Ct, Cr〉 ∈ hs and is called

edge with Ct being the trigger set and Cr the resetting set. In this context, states
are called locations and are denoted with s, s′, s1, (The same nomenclature
will be used for timed automata.)

The edge s
a,Ct,Cr- s′ becomes enabled when every clock in Ct terminates,

i.e., every clock has reached or passed its termination value. When the system

is in location s and s
a,Ct,Cr- s′ becomes enabled, it moves to location s′

performing action a and resetting every clock in Cr. When a clock x is reset,
its value is set to zero and its termination value is sampled according to Fx.
Once location s′ is reached, the system should idle there until an outgoing edge
becomes enabled.

{x, y}
s0

off, {y}, ∅

on, {x}, {x, y}

s1

on,
{x},

Fig. 1. The switch

Example 1. Consider a switch that con-
trols a light in a stairway. People arrive
and turn on the light once 30 minute aver-
age according to a Poisson process. They
press the switch even if the light is still
on. It switches automatically off exactly 2
minutes after the last time the switch was
pressed.

Fig. 1 represents this switch. In the
picture, circles represent locations and edges are represented by arrows. Besides,
Fx(t) = 1 − e−

t
30 and Fy(t) = if t < 2 then 0 else 1.

5

Probabilistic Semantics. A valuation is a function that assigns a real number in
IR to each clock in C. There are two kinds of valuations. The first kind, ranging
over v, v′, v1,. . . , record the passage of time, while the other, ranging over e, e′,
e1,. . . , are used to save the termination value of the clocks. The latter ones are
called termination conditions and the first ones, just valuations.

Let SA be a stochastic automaton with clocks in C. Let n be the cardinality
of C. A state is a triple consisting of a location, a valuation, and a termination

condition. Thus, ΣS
def
= S × IRn

≥0 × IRn is the set of states. Notice that for
any location s, valuation v, and termination condition e there is a unique tuple
〈s, v(x1), . . . , v(xn), e(x1), . . . , e(xn)〉 ∈ ΣS . It is denoted by 〈s, v, e〉.

Definition 4. The semantics of SA is given by PTS(SA) = (ΣS ,A∪ IR>0,−→)
where −→ is defined in the following.

Discrete (untimed) case: Let v[Cr: =0](x)
def
= if x ∈ Cr then 0 else v(x).

Then:
s

a,Ct,Cr- s′ ∀x ∈ Ct. v(x) ≥ e(x) v′ = v[Cr: =0]

〈s, v, e〉
a
−→ (ΣS ,B(ΣS), P s′

v′,e)

where B(ΣS) is the Borel algebra with elements in ΣS and P s′

v′,e is the unique
probability measure on B(ΣS) induced by the distribution functions

F0 = Is′ Fi = Iv′(xi) Fn+i =

{

Fxi
if xi ∈ Cr

Ie(xi) otherwise

with 0 < i ≤ n and Id(d
′)

def
= if d = d′ then 1 else 0.

Timed case: Let (v + d)(x)
def
= v(x) + d. Then:

∀ d′≤d. ∀ s
a,Ct,Cr- . ∃x ∈ Ct. (v + d′)(x) ≤ e(x)

〈s, v, e〉
d
−→ 〈s, v + d, e〉

The discrete case captures the intuition described above: s
a,Ct,Cr- s′ can

be taken whenever it becomes enabled, that is, every x ∈ Ct is terminated in the
current valuation v and the current termination condition e, namely v(x) ≥ e(x).
Then clocks in Cr are set to 0 and their termination values are sampled according
to the respective distribution function. Indicator functions take care that the
location and valuation are the newly defined, and that the termination values of
clocks not in Cr remain unchanged.

In the timed case, the stochastic automaton is allowed to stay at location s
for d units of time as long as no edge becomes enabled during this time.

Probability Abstracted Semantics. To abstract from probabilities in a SA, its
semantics should be given in terms of timed LTS rather than PTS. To do so,
one probabilistic step is instead interpreted as several trivial (non-deterministic)
transitions whose target states are probable states. What “probable state” means
in the context of continuous probabilities is not so clear. Timed transition should
be as before.

6

A first (not so naive) view may be to consider probable those states that fall
in the support set of the probability measure of the probabilistic transition. In
this sense the discrete transition relation of the LTS should be defined by:

s
a,Ct,Cr- s′ ∀x ∈ Ct. v(x) ≥ e(x) v′ = v[Cr: =0]

if x ∈ Cr then e′(x) ∈ supp(Fx) else e′(x) = e(x)

〈s, v, e〉
a
−→ 〈s′, v′, e′〉

Notice that the enabling condition ∀x ∈ Ct. v(x) ≥ e(x) is the same as before
but, now, it induces many non-deterministic transitions, one for each possible
termination condition.

Consider the SA given in Fig. 2. Let Fx and Fy be uniform distributions in
[0, 1] and [1, 2], respectively. In PTS(SAex1), the probability that c occurs before
b is 0 for any scheduler. However, in the LTS obtained from SAex1 and according
to the previous rule, the following execution is possible:

〈s0, v0, e0〉 a 〈s1, v0, e1〉 1 〈s1, v1, e1〉 c 〈s3, v1, e1〉 b 〈s4, v1, e1〉 (1)

a, ∅, {x, y}

c, {y}, ∅

b, {x}, ∅

b, {x}, ∅

c, {y}, ∅

s3

s1

s0

s4

s2

Fig. 2. SAex1

where vd(z) = ed(z) = d for z ∈ {x, y}
and d ∈ IR≥0. Execution (1) is in fact a sup-
ported execution in PTS(SAex1) (i.e., it is in
supp execs(PTS(SAex1), 〈s0, v0, e0〉)). Neverthe-
less, its presence in the probability abstracted
semantics is undesirable due to the fact that ex-
ecution of c before b is improbable.

Therefore, we follow a different approach. We
still look at the support set, but instead elimi-
nate the improbable borders. We call this set the
useful domain of a distribution.

Definition 5. Let F be a distribution function
with support set supp(F). supp(F) can be written
as

⋃

i Ii where each Ii is an interval on the real
line such that if Ii ∪ Ij is also an interval then i = j (i.e., each interval Ii is
“maximal”). The useful domain of F is the set udom(F) =

⋃

i I ′i where each
interval I ′i satisfies:

1. lub(Ii) = lub(I ′i) and glb(Ii) = glb(I ′i), and
2. for d ∈ {lub(I ′i), glb(I ′i)}, d ∈ I ′i ⇔ PF ({d}) > 0;

where lub and glb are respectively the lowest upper bound and the greatest lower
bound of a given interval, and PF is the unique probability measure defined by
F . (Note that glb(Ii) may be −∞ and lub(Ii) may be ∞).

For example, if Fu is a uniform distribution in the interval [1, 2], then udom(Fu) =

(1, 2); if Fmix(d) = if d=2 then 1
2 else

Fu(d)
2 then udom(Fmix) = (1, 2]; if Fg

is a geometric distribution, udom(Fg) = IN; if Fe is a negative exponential dis-
tribution, udom(Fe) = (0,∞). Notice that their support sets are [1, 2], [1, 2], IN,
and [0,∞), respectively.

7

Definition 6. The probability abstracted semantics of SA is given by LTS(SA) =
(ΣS ,A ∪ IR>0,−→) where −→ is defined by

s
a,Ct,Cr- s′ ∀x ∈ Ct. v(x) ≥ e(x) v′ = v[Cr: =0]

if x ∈ Cr then e′(x) ∈ udom(Fx) else e′(x) = e(x)

〈s, v, e〉
a
−→ 〈s′, v′, e′〉

for the discrete case, and the timed case is as in Definition 4.

Notice that execution (1) is not present in LTS(SA). This is a consequence
of considering the useful domain rather than the support set of a distribution
function in the definition of the discrete case.

Finding a criterion to assert adequacy is not straightforward due to the fact
that, in the probability abstracted semantics, there is no notion of measure.
Besides, there might be an execution in the probabilistic semantics that, point-
wise, has probability 0, but any open cone3 containing it has probability greater
than 0 (execution (1) is precisely an example of it). This is a consequence of
continuous probabilities.

A first approach to adequacy may be to verify that every execution ρ of
LTS(SA) is an execution of PTS(SA) such that every open cone containing
ρ has probability greater than 0 (for some scheduler), and vice-versa. Tech-
nically speaking, this adequacy criteria states that, for all state σ ≡ 〈s, v, e〉,
execs(LTS(SA), σ) = supp execs(PTS(SA), σ).

However, execution (1) is a supported execution of PTS(SAex1) and it is
not present in LTS(SAex1). Therefore, a weaker notion of adequacy is neces-
sary. Although execs(LTS(SA), σ) ⊆ supp execs(PTS(SA), σ) will be required,
the converse is relaxed. We still want that execs(LTS(SA), σ) contains enough
probable executions so that, for any scheduler of PTS(SA), there is a set of exe-
cutions with probability 1 (in PTS(SA)) that is contained in execs(LTS(SA), σ).
This adequacy criterion is stated in Theorems 1 and 2.

Theorem 1. For every σ ∈ ΣS , execs(LTS(SA), σ) ⊆ supp execs(PTS(SA), σ).

The proof of this theorem should be clear from the fact that useful domains of
distribution functions are included in their support set.

Theorem 2. For every state σ ≡ 〈s, v, e〉 and for every scheduler S for σ there is
a set Ξ ⊆ execs(PTS(SA), σ) such that P S

σ (Ξσ) = 1 and Ξ ⊆ execs(LTS(SA), σ).

Proof. For every scheduler S, σ = 〈s, v, e〉 and n ≥ 0, define the sets ΞS
σ(n)

inductively as follows:

(1) ΞS
σ(0) = execs(S, σ).

3 An open cone is a cone in which every probabilistic transition defines an open rect-
angle rather than an arbitrary measurable set (see item 2 in the definition of cone).

8

(2) If S(〈s, v, e〉) = 〈s, v, e〉
a
−→ Ps′

v′,e, comes from edge s
a,Ct,Cr- s′ as defined

in rule discrete, Definition 4, then

ΞS
σ(n + 1) = {(〈s, v, e〉a〈s′, v′, e′〉)ρ |

if x ∈ Cr then e′(x) ∈ udom(Fx) else e′(x) = e(x)

∧ ρ ∈ Ξ
S/(〈s,v,e〉a〈s′,v′,e′〉)
〈s′,v′,e′〉 (n)}.

(3) If S(〈s, v, e〉) = 〈s, v, e〉
d
−→ 〈s, v + d, e〉 is a timed transition, then

ΞS
σ(n + 1) = {(〈s, v, e〉d〈s, v + d, e〉)ρ | ρ ∈ Ξ

S/(〈s,v,e〉d〈s,v+d,e〉)
〈s,v+d,e〉 (n)}.

Define ΞS
σ =

⋂

n≥0 ΞS
σ(n). Clearly ΞS

σ(n) ∈ bcones(S, σ); as a consequence

ΞS
σ ∈ bcones(S, σ). By induction, it can be proven that P S

σ (ΞS
σ(n)) = 1 for all

n ≥ 0. Then P S
σ (ΞS

σ) = P S
σ (

⋂

n≥0 ΞS
σ(n)) = limn→∞ P S

σ (ΞS
σ(n)) = 1. ⊓⊔

4 Timed Automata with Deadlines

Timed automata with deadlines [5] are a variant of traditional timed automata
though both models share the same expressive power.

For a set of clocks C, define the set Φ of constraints on C to be the set of
propositional logic formulas with atomic propositions x ≤ d and x < d where
x ∈ C and d ∈ IR≥0. Valuations can be lifted to clock constraints in the usual
way. Denote v |= φ if constraint φ holds in valuation v.

Definition 7. Let C be a set of clocks and A a set of action names. A timed
automaton (with deadline) (TA for short) is a tuple (LTS, ht) where LTS =
(S,A,−→) is a labelled transition system and ht ⊆ −→ × (Φ × Φ ×℘(C)) is a re-

lation called time annotation. Let s
a,φg,φd,C

- s′ denotes 〈s
a
−→ s′, φg, φd, C〉 ∈

ht and is called edge. φg is called guard and φd, deadline and it must hold that
φd ⇒ φg.

In s
a,φg,φd,C

- s′, constraint φg states the moment the transition may be
taken, constraint φd indicates when it must be taken, and the set C is the set of
clocks that should be reset at the moment the transition occurs. The system is
allowed to idle in a location s as long as all the deadlines of its outgoing edges
are invalid. This behaviour is formalised as follows.

Definition 8. The semantics of TA is given by LTS(TA) = (S × IRn
≥0,A∪ IR>0,−→)

where n is the cardinality of C and −→ is defined by:

discrete timed

s
a,φg,φd,C

- s′ v |= φg v′ = v[C: =0]

〈s, v〉
a
−→ 〈s′, v′〉

∀ d′≤d. (v + d′) |= tpcs

〈s, v〉
d
−→ 〈s, v + d〉

where tpcs
def
= ¬

∨

{φd | s
a,φg,φd,C

- s′} is the time progress condition.

9

Rule discrete states that whenever the system is in location s, the edge

s
a,φg,φd,C

- s′ can be taken if φg holds in the current valuation v. When taking
the transition, clocks in C are reset to 0. Rule timed states that the system is
allowed to idle in s for d units of times if within this period no deadline forced
the execution of a transition, i.e., predicate tpcs holds within this interval.

5 From Stochastic Automata to Timed Automata

In the following, the translation from SA to TA is presented. First an informal
derivation of the definition is given which (hopefully) explain the rationale be-
hind a not so intuitive translation rule in Definition 9. Afterwards, adequacy
theorems for this translation are given showing that it preserve timed traces.

Consider E ≡ s1
a,{x},{y}

- s2 where udom(Fx) = (1, 2). It is probable
that E is performed at any time in which x > 1, but certainly, if x ≥ 2,
it must be performed. Therefore, a possible translation for E is the TA edge

s1
a,x>1,x≥2,{y}

- s2.
This translation is naive in the sense that E is taken out of context. Location

s1 may be reached after clock x has terminated. For example consider that E is

preceded by E′ ≡ s0
a,{x},∅

- s1 and suppose the system is at state 〈s0, v, e〉
with v(x) = e(x) = 1.5. After E′ was taken, state 〈s1, v, e〉 is reached and clock
x has terminated. Then edge E must be performed. Instead the translation

edge s1
a,x>1,x≥2,{y}

- s2 will allow for a 0.5 units delay at state 〈s1, v〉
4. In

this context, the correct interpretation of E is s1
a,tt,tt,{y}

- s2 (clock x has
terminated and hence it cannot delay executions).

To distinguish whether x has terminated or not in location s1, we define a
function I that ranges on clocks and helps to record the current context. So,
define I(x) = ⊥ if and only if x is not active. (Remember that a clock is active
if it was set but did not terminate.) Thus, E is translated in two different TA

edges: (s1, I1)
a,x>1,x≥2,{y}

- (s2, I2) and (s1, I
′
1)

a,tt,tt,{y}
- (s2, I

′
2) where

I1(x) 6= ⊥, I ′
1(x) = ⊥, and I2(x) = I ′

2(x) = ⊥. Notice that y is set on E, hence
it becomes active at this point. As a consequence I2(y) 6= ⊥ and I ′

2(y) 6= ⊥.
Suppose now that Fx is such that udom(Fx) = (1, 2) ∪ (3, 4). Encoding the

guard of E by x > 1 and its deadline by x ≥ 4 is not a good idea since E may be
taken after delaying 2.5 units of time which is an improbable value. So, it is better
to split the pair guard-deadline in two possibilities: one pair is x > 1 and x ≥ 2,
and the other x > 3 and x ≥ 4. To distinguish these two possible encodings
let I(x) take the value of the interval that should be encoded. Therefore, E

can be translated in three different TA edges: (s1, I1)
a,x>1,x≥2,{y}

- (s2, I2)

with I1(x) = (1, 2), (s1, I
′
1)

a,x>3,x≥4,{y}
- (s2, I

′
2) with I ′

1(x) = (3, 4), and

(s1, I
′′
1)

a,tt,tt,{y}
- (s2, I

′′
2) with I ′′

1 (x) = ⊥. Similarly, udom(Fy) may also be
split in several noncontiguous intervals. As a consequence each of these three

4 e does not play a role in TA!

10

x > 0, x ≥ ∞

s0,⊥, [2, 2] s0,⊥,⊥ s0, (0,∞),⊥ s0, (0,∞), [2, 2]

s1,⊥, [2, 2] s1,⊥,⊥ s1, (0,∞),⊥ s1, (0,∞), [2, 2]

∅

on,

off′

tt, tt′

∅

on,

{x, y}

{x, y}

x > 0,
x ≥ ∞,

y ≥ 2,tt, tt,
off,

on, tt, tt, {x, y}

y ≥ 2,
∅

y ≥ 2,

y ≥ 2,

off,

on, x > 0, x ≥ ∞, {x, y}

on, tt, tt, {x, y}
on, tt, tt, {x, y}

∅

off,

on,
x > 0,
x ≥ ∞,
{x, y}

tt, tt,
{x, y}

on,

Fig. 3. Translation of the switch

edges may explode in several more since I2(y), I ′
2(y), and I ′′

2 (y) may take as
many values as noncontiguous intervals in udom(Fy).

Translation function sa2ta is defined in the following. For a clock x such that
udom(Fx) =

⋃

i∈J Ii, where Ii and Ij are not contiguous nor intersecting for
i 6= j, let Ix = {Ii | i ∈ J}. Let ℑ be the set of all functions I that assigns a
value I(x) ∈ Ix ∪ {⊥} to each clock x ∈ C.

Definition 9. Let SA = (LTS, hs) with LTS = (S,A,−→). Define sa2ta(SA)
def
=

(LTS
′, ht) with LTS

′ = (S′,A,−→′) where

1. S′ def
= S × ℑ,

2. (s, I)
a
−→′ (s′, I ′)

def
⇐⇒ s

a
−→ s′ ∧ I, I ′ ∈ ℑ, and

3. (a, φg, φd, Cr) ∈ ht((s, I)
a
−→ (s′, I ′)) (i.e., (s, I)

a,φg,φd,Cr- (s′, I ′)) if

(a) s
a,Ct,Cr- s′

(b) if x ∈ Cr, I
′(x) ∈ Ix; if x ∈ (Ct−Cr), I

′(x) = ⊥; otherwise I ′(x) = I(x)

(c) φg =
∧

x∈Ct∧I(x) 6=⊥

x�I(x)glb(I(x))

(d) φd =
∧

x∈Ct∧I(x) 6=⊥

x ⊠I(x) lub(I(x))

where �I(x) is ≥ if glb(I(x)) ∈ I(x) and > otherwise, and ⊠I(x) is > if
lub(I(x)) ∈ I(x) and ≥ otherwise.

Fig. 3 depicts the translation of the switch (see Example 1). Labels on the
location give the original location name together with function I. For example
(s0, (0,∞),⊥) represents the location (s0, I) where I(x) = (0,∞) and I(y) = ⊥.
(s0,⊥,⊥) may be considered the initial state, since the light is originally off
and none has been schedule to arrive. Locations and edges in gray are hence
unreachable.

In the following, adequacy theorems are given. They state that the transla-
tion is correct in the sense that every trace of the original SA is also a trace

11

(a)
a, ∅, {x, y} b, {x}, ∅ c, {y}, ∅

s2 s3s0 s1

(b)
a, tt, tt, {x, y} b, x ≥ 0, x > 1, ∅ c, y ≥ 0, y > 1, ∅

s1, I, I s2,⊥, Is0,⊥,⊥ s3,⊥,⊥

Fig. 4. SAex2 and sa2ta(SAex2) (I = [0, 1])

of its translation and vice-versa. The next theorem states the first inclusion:
LTS(sa2ta(SA)) simulates the abstract semantics LTS(SA), and hence its traces
are included in LTS(SA).

Theorem 3. If 〈s, v, e〉 and 〈(s, I), u〉 are states of LTS(SA) and LTS(sa2ta(SA))
respectively, then 〈s, v, e〉 . 〈(s, I), u〉 if for every clock x, (1) I(x) 6= ⊥ implies
e(x) ∈ I(x) and v(x) = u(x), and (2) I(x) = ⊥ implies v(x) ≥ e(x).

Proof. Define R to be the least relation containing all pairs (〈s, v, e〉, 〈(s, I), u〉)
that satisfy conditions (1) and (2) above. It is routine to prove that R is a
simulation relation. ⊓⊔

The converse does not preserve simulation. Consider the automaton SAex2

and its translation sa2ta(SAex2) given in Fig. 4(a) and (b), respectively. Suppose
udom(Fx) = udom(Fy) = [0, 1]. To be illustrative, assume time advances in
discrete units of 1

2 size. Their semantics can then be depicted as in Fig. 5(a) and
(b), respectively5.

���
���
���
���

��
��
��
��

��
��
��
��

�������
�������
�������

�������
�������
�������

���
���
���
���

��
��
��
��

��
��
��
��

�������
�������
�������
�������

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�������
�������
�������
�������

����
����
����
����

��
��
��
��

��
��
��

��
��
��

�������
�������
�������

�������
�������
�������

��������
��������
��������
��������

������ ����

������ ������ ����

������

������

������

������

������ ������

������

������

����

������������������������

������

������

������

������

������

������

������

������

������

������

������

������

������������ ������ ������������

������ ������ ������

������ ������ ������

������ ������ ������

������ ������ ������ ������ ������ ������

������

(b)(a)

a

b b b

bbb

bbb

c c c c

c c c

c

c

1
2

1
2

1
2

1
2

1
2
1
2

1
1
21

1
2
1
2

1

1
2
1
2

1
1
2

c

a

1
2

1
2

1
2

1
2

1

1

c

c

b

b

b

1
2

Fig. 5. The LTSs of the automata in Fig. 4

LTS(SAex2) does not sim-
ulate LTS(sa2ta(SAex2)) as it
is shown by the following sce-
nario. Let LTS(sa2ta(SAex2))
perform action a. LTS(SAex2)
must then choose one of its
many a branches; suppose it
chooses the leftmost transi-
tion. LTS(sa2ta(SAex2)) may
choose now to perform the
b-transition without waiting:
LTS(SAex2) cannot simulate
this step. This situation is due
to the fact that the termi-
nation time of the clocks in
LTS(SA) is chosen at the moment they are started, while in sa2ta(SA) the termi-
nation time is only decided according to the guard and deadline of an edge, after
the clock was started. Nevertheless, the translation does preserve trace inclusion,
that is, traces of LTS(sa2ta(SA)) are included in LTS(SA). Forward-backward

5 We insist: Fig. 5(a) and (b) are intended to be illustrative and by no means the actual
LTS which should contain an uncountably large number of states and transitions.

12

simulation [18] is proven to coincide with trace inclusion. States equally shaded
in Fig. 5(a) are, in fact, related by a forward-backward simulation. Details of
the definition of forward-backward simulation are omitted as well as the proof
of the next theorem which can be found in [9].

Theorem 4. If 〈(s, I), v〉 is a state of LTS(sa2ta(SA)) and 〈s, v, e〉 is a state
of LTS(SA) such that, for every clock x, I(x) = ⊥ and e(x) ≤ v(x), then
tr(〈(s, I), v〉) ⊆ tr(〈s, v, e〉).

The extra requirement that for every clock x, I(x) = ⊥ and e(x) ≤ v(x),
impose a small but insignificant restriction. It says that traces are preserved only
from initial states: an initial state in SA has no active clocks, i.e. e(x) ≤ v(x) for
all x. In consequence, the translated state must not have active clocks as well,
i.e. I(x) = ⊥ for all x.

Theorems 1, 2, 3 and 4 state adequacy of the translation of a SA in a TA.
Theorems 2 and 3 together say that likely traces in SA are present in sa2ta(SA).
Therefore safety properties of SA are preserved by the translation. In particular,
a location that is reachable in sa2ta(SA) is not likely to be reachable in SA.
Theorems 1 and 4 state that sa2ta(SA) only produce likely traces in SA. Hence,
a location that is reachable en sa2ta(SA) is likely to be reachable in SA. It
should be observed that the translation preserve linear properties with significant
measures. For instance, a property that requires that a particular state (i.e.
location and valuations) is reachable in SA may have measure 0 in the context
of continuous distributions, and yet be reachable in sa2ta(SA).

Finally, a note about the explosion introduced by the translation is in order.
If S is the set of locations of SA, S × ℑ is the set of locations of sa2ta(SA).
Therefore, the number of states in sa2ta(SA) is bounded by |S| ·

∏

x∈C(|Ix|+ 1).
As a consequence, the translation induces a blow up in the number of locations
that is exponential in the number of clocks. Moreover, notice that not every finite
SA can be translated into a finite TA. If SA contains a clock whose useful domain
is defined as an infinite set of intervals (as e.g. in a geometric distribution), then
sa2ta(SA) is infinite.

6 Compositionality of the Translation

sa2ta commutes with respect to parallel composition. That is, the translation
of the parallel composition of two stochastic automata is equivalent to the par-
allel composition of the timed automata resulting from the translation of each
stochastic automaton. This is stated in the rest of this section.

Timed automata with deadlines allow for different definitions of parallel com-
position [5]. Some definitions are better suited for the modelling of hard real
time systems, in which components cannot wait for synchronisation, and others
oriented to soft real time, in which synchronisation can be delayed until all syn-
chronising components are ready. This last type of parallel compositions are the
same type of composition used in SA.

13

Table 1. Rules for Parallel Composition (symmetric rules where omitted)

(a) composition in SA

s1
a,Ct,Cr- s′1 a /∈ A

s1 ||A s2
a,Ct,Cr- s′1 ||A s2

s1

a,C1
t ,C1

r- s′1 s2

a,C2
t ,C2

r- s′2 a ∈ A

s1 ||A s2

a,C1
t ∪C2

t ,C1
r∪C2

r- s′1 ||A s′2

(b) composition in TA

s1

a,φg ,φd,C
- s′1 a /∈ A

s1 ||A s2

a,φg,φd,C
- s′1 ||A s2

s1

a,φ1
g ,φ1

d,C1
- s′1 s2

a,φ2
g,φ2

d,C2
- s′2 a ∈ A

s1 ||A s2

a,φ1
g∧φ2

g,φ1
d∧φ2

d,C1∪C2
- s′1 ||A s′2

Definition 10. Let SA1 and SA2 be two stochastic automata with the same set
of actions A. Let A ⊆ A. The parallel composition of SA1 and SA2 is defined
by the stochastic automaton SA1 ||

A
SA2 with set of locations S = {s1 ||A s2 |

s1 ∈ S1 ∧ s2 ∈ S2} and edges defined by rules in Table 1(a).

For two timed automata TA1 and TA2 with set of actions A, the parallel
composition of TA1 and TA2 is the timed automaton TA1 ||

A
TA2 with set of

locations S = {s1 ||A s2 | s1 ∈ S1 ∧ s2 ∈ S2} and edges defined by rules in Ta-
ble 1(b).

The criteria to show that sa2ta(SA1 ||
A

SA2) and sa2ta(SA1) ||A sa2ta(SA2)
are equivalent is structural bisimulation. Structural bisimulation [8] is a bisim-
ulation relation defined directly on timed automata and it is strictly finer than
bisimulation on the underlying semantics of the timed automata.

Definition 11. R ⊆ S×S is a structural bisimulation if it is symmetric and for
all a ∈ A, φg, φd ∈ Φ, and C ∈ C, whenever 〈s1, s2〉 ∈ R, there exist s′2 ∈ S such

that s1
a,φg,φd,C

- s′1 implies s2
a,φg,φd,C

- s′2 and 〈s′1, s
′
2〉 ∈ R. s1 and s2 are

structurally bisimilar, denoted by s1 ∼s s2, if there is a structural bisimulation
R with 〈s1, s2〉 ∈ R.

∼s is itself a structural bisimulation relation, and if s1 ∼s s2 in TA, then 〈s1, v〉 ∼
〈s2, v〉 in LTS(TA) for every valuation v [8].

The next theorem states the compositional characteristic of sa2ta.

Theorem 5. Let SA1 and SA2 be stochastic automata with disjoint sets of
clocks C1 and C2 respectively. Then (s1 ||

A
s2, I1 ⊕ I2) ∼s (s1, I1) ||A (s2, I2)

where (s1 ||
A

s2, I1 ⊕ I2) is a state of sa2ta(SA1 ||
A

SA2) with (I1 ⊕ I2)(x)
def
=

if x ∈ C1 then I1(x) else I2(x), and (s1, I1)||A(s2, I2) is a state of sa2ta(SA1)||A
sa2ta(SA2).

Proof. Let R be the smallest symmetric relation containing all tuples of the
form 〈(s1 ||A s2, I1 ⊕ I2), (s1, I1) ||A (s2, I2)〉 that satisfies the conditions of the
theorem. It is routine to prove that R is a structural bisimulation. ⊓⊔

14

7 Related Work

To the author’s knowledge, there are two works on a similar relation. Bryan &
Derrick [7] also presented a translation from stochastic automata to timed au-
tomata with deadlines where they claim to preserve timed traces. Unfortunately
this is not the case. Bryan & Derrick proposed to preserve the structure of the
automata (in particular they do not consider whether clocks active) changing

only the edge as follows6: (a, φg, φd, Cr) ∈ ht(s
a
−→ s′) (i.e., s

a,φg,φd,Cr- s′)
if the following holds:

1. s
a,Ct,Cr- s′

2. φg =
((

∧

x∈Ct
x ≥ glb(supp(Fx))

)

∧
(
∨

x∈Ct
x ∈ supp(Fx)

))

∨
(
∧

x∈Ct
x ≥ lub(supp(Fx))

)

3. φd =
∧

x∈Ct
x ≥ lub(supp(Fx))

Consider SAex2 given in Fig. 4 but take Fx and Fy such that supp(Fx) = [2, 4]
and supp(Fy) = [0, 1]∪[5, 6]. The translation proposed by Bryan & Derrick yields
the following TA:

c, 0 ≤ y ≤ 1 ∨ 5 ≤ y ≤ 6, y ≤ 6, ∅a, tt, tt, {x, y} b, 2 ≤ x ≤ 4, x ≤ 4, ∅
s2s0 s3s1

It can be verified that a 3 b c is a trace likely to occur in SA while it is not a trace
of the TA. Therefore, this translation is not safe. Besides, Bryan & Derrick do
not study compositionality of the translation.

The second work is a translation of IGSMPs in an ad-hoc variation of timed
automata called ITA [6]. Bravetti proves that it commutes with parallel compo-
sition. However, no adequacy criteria has been provided in this case, which is
unfortunate because it would have revealed it does not preserve safely the traces.
Since, in this case, the relation to our models are not close, the example that
shows it is provided apart in Appendix A.

In any case, both works consider support sets to obtain the guards. Hence, a
pathological case similar to the one in Fig. 2 would yield to a translation where
undesired executions like (1) are present.

8 Concluding Remarks

We defined a compositional translation from stochastic automata to timed au-
tomata. The translation abstracts probabilities and preserves trace behaviour.
The simulation of SA by sa2ta(SA) guarantees that any state that cannot be
reached in the translation timed automaton sa2ta(SA) can neither be reached
in the original stochastic automaton SA. In fact, it guarantees the preservation
of safety properties. The converse is slightly weaker due to the fact that there is
no mean to measure how probable is that a state is reachable in the translation
sa2ta(SA). In this sense it can only be guaranteed that whenever a trace leads

6 The notation w.r.t. [7] was slightly changed but the definition is exactly the same.

15

to a reachable state in sa2ta(SA) then there is a supported execution defining
the same trace that leads to a similar state in SA. This does not guarantee that
the state is reachable with some probability in PTS(SA). However, one can aim
for reachability of sets of states and check that its measure is significant (greater
than 0). For instance, the reachability of a particular location would usually
have significant measure whenever it is reachable. Under this condition it can be
concluded that if a location s is reachable in sa2ta(SA), then it is also reachable
in SA.

The translation does introduce an exponential explosion on the size of the
automata that, hopefully, would be seldom harmful (many of the newly generated
location would turn to be unreachable).

The translation to timed automata may profit of well known and developed
techniques for model checking [25, 20, 21, etc.]. Althoug techniques for model
checking directly on a stochastic model exists [1, 17] they do have their restric-
tions. First, both of them require that the support set of all distributions is
bounded excluding, thus, important cases like exponential distribution. Beside,
they also use region construction, which makes the result not useful in prac-
tice. In particular, [17] give an approximation to the measure of the preoperty
which make the technique more costly according the error of the approximation
decreases.

An further study is to relate stochastic automata to probabilistic timed au-
tomata, i.e., timed automata with probabilistic jumps, or a combination of both
models.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time
systems. In J. Leach Albert, B. Monien, and M. Rodŕıguez, editors, Proceed-
ings of the 18th International Colloquium Automata, Languages and Programming
(ICALP’91), Madrid, volume 510 of Lecture Notes in Computer Science, pages
113–126. Springer-Verlag, 1991.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

3. J.C.M. Baeten and S. Mauw, editors. Proceedings CONCUR 99, Eindhoven, The
Netherlands, volume 1664 of Lecture Notes in Computer Science. Springer-Verlag,
1999.

4. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking
of continuous-time Markov chains. In Baeten and Mauw [3], pages 146–161.

5. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. In
Roever W.-P. de, H. Langmaack, and A. Pnueli, editors, Compositionality: The
Significant Difference, volume 1536 of Lecture Notes in Computer Science, pages
103–129. Springer-Verlag, 1998.

6. M. Bravetti. Specification and Analysis of Stochastic Real-Time Systems. PhD
thesis, Dottorato di Ricerca in Informatica. Università di Bologna, Padova, Venezia,
February 2002.

7. J. Bryans and J. Derrick. Stochastic specification and verification. In Irish Work-
shop on Formal Methods, 1999.

16

8. P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, Department of Computer Science, University of Twente, 1999.

9. P.R. D’Argenio. A compositional translation of stochastic automata into timed
automata. Technical Report CTIT 00-08, Department of Computer Science, Uni-
versity of Twente, 2000.

10. P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the
specification of stochastic systems (extended abstract). In D. Gries and W.-P.
de Roever, editors, Proceedings of the IFIP Working Conference on Programming
Concepts and Methods, PROCOMET’98, Shelter Island, New York, USA, IFIP
Series, pages 126–147. Chapman & Hall, 1998.

11. P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. Specification and analysis of
soft real-time systems: quantity and quality. In Proceedings of the 20th IEEE
Real-Time Systems Symposium, RTSS’99, Phoenix, Arizona, USA, pages 104–114.
IEEE Computer Society Press, 1999.

12. L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, December 1997.

13. P.W. Glynn. A GSMP formalism for discrete event simulation. Proceedings of the
IEEE, 77(1):14–23, 1989.

14. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193–244, 1994.

15. H. Hermanns. Interactive Markov Chains – The Quest for Quantified Quality,
volume 2428 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

16. J. Hillston. A Compositional Approach to Performance Modelling. Distinguished
Dissertation in Computer Science. Cambridge University Press, 1996.

17. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In C. Palamidessi, editor,
Proceedings CONCUR 2000, State College, Pennsylvania, USA, volume 1877 of
Lecture Notes in Computer Science, pages 123–137. Springer-Verlag, 2000.

18. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations. part I:
Untimed systems. Information and Computation, 121(2):214–233, September 1995.

19. R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

20. A. Olivero. Modélisation et Analyse de Systèmes Temporisé et Hybrides. PhD
thesis, Institut National Politechnique de Grenoble, France, September 1994.

21. P. Pettersson. Modelling and Verification of Real-Time Systems Using Timed Au-
tomata: Theory and Practice. PhD thesis, Department of Computer Systems,
Uppsala University, February 1999.

22. R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1995.

23. M.Y. Vardi. Automatic verification of probabilistic concurrent finite state pro-
grams. In 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, pages 327–338. IEEE Computer Society Press, 1985.

24. W. Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and J.W.
Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes
in Computer Science, pages 502–520. Springer-Verlag, 1990.

25. S. Yovine. Méthodes et outils pour la vérification symbolique de systèmes tempo-
risés. PhD thesis, Institut National Politechnique de Grenoble, France, May 1993.

17

A The example on the translation of IGSMP into ITA

In this section, the reader needs to be familiarized with Bravetti’s doctoral dis-
sertation. To learn about IGSMP, ITA, and the translation the reader is referred
respectively to Chapters 6, 5, and 8 in [6].

Consider the IGSMP in Fig. 6(a) and suppose the distributions of clocks
C1 and C2 have support set in the intervals [1, 2] and [3, 4] respectively. Its
translation is depicted in Fig. 6(b). In the reset states s0, s1, and s2 of the

s6

s0

s1 s2

s3

s4 s5

C
−

2

C
−

1
C

−

2

C
+

1

C
+

2

C
+

2

C
−

1

C
+

1

s6

s0

s1 s2

s3

s4 s5

C2

C1 C2

C1

C1 ∈ [1, 2] C2 ∈ [3, 4]

C2 ∈ [3, 4] C1 ∈ [1, 2]

(a) (b)

Fig. 6. The example IGSMP and its translation into an ITA

ITA, timed is not allowed to progress. So from s0 to s3, clocks C1 and C2

are reset without letting time pass. In a timed state, like s3, s4, or s5, time
progress is defined according to the guards in the outgoing edges. More precisely

(s, v)
d
−→ (s, v + d) if there exists d′ ≥ d such that (v + d′) |=

∧

{φ | s
φ
-}. At

state s3, the value of C1 and C2 can only be 0. Let v be this valuation. Then
C1 ∈ [1, 2] ∧ C2 ∈ [3, 4] does not hold in (v + d) for every d7. As a consequence,
a simple delaying trace is allowed in the IGSMP but not in the translation ITA.

7 A possible solution to this problem would be to define (s, v)
d
−→ (s, v + d) if for all

d′ ≤ d, (v + d′) |=
V

{
←−
φ | s φ-}, where ←−· is the usual past closure operation (see,

e.g., [14]).

[Note added on 29-3-2006] The example above corresponds to ITA semantics re-
ported on an early version of Mario Bravetti’s Dissertation (published on February
2002). On a revised version appeared on April 2002, the semantics of ITA was changed
in a similar manner to the one suggested in footnote 7. The new rule can be seen in
Table 5.1, at page 112 of the last revision of Bravetti’s dissertation.

18

