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Abstract. This paper develops sound and complete axiomatisations for
the divergence sensitive spectrum of weak bisimulation equivalence. The
axiomatisations can be extended to a considerable fragment of the linear
time – branching time spectrum with silent moves, partially solving an
open problem posed in [5].

1 Motivation

The study of comparative concurrency semantics is concerned with a uniform
classification of process behaviour, and has cumulated in Rob van Glabbeek’s
seminal papers on the linear time-branching time spectrum [4,5]. The main (’ver-
tical’) dimension of the spectrum with silent moves [5] spans between trace equiv-
alence (TE) and branching bisimulation (BB), and identifies different ways to
discriminate processes according to their branching structure, where BB induces
the finest, and TE the coarsest reasonable semantics. Due to the presence of silent
moves, this spectrum is spread in another (’horizontal’) dimension, determined
by the semantics of divergence. In the fragment spanning from weak bisimu-
lation (WB) to BB, seven different criteria to distinguish divergence induce a
’horizontal’ lattice, and this lattice appears for all the bisimulation relations.

To illustrate the spectrum, van Glabbeek lists a number of examples and
counterexamples showing the differences among the various semantics [5]. Pro-
cess algebra provides a different – and to our opinion more elegant – way to
compare semantic issues, by providing distinguishing axioms that capture the
essence of an equivalence (or preorder). For the ’vertical’ dimension of the spec-
trum, these distinguishing axioms are well-known (see e.g. [4,7,2]). However, the
’horizontal’ dimension has resisted an axiomatic treatment so far. We believe
that this is mainly due to the fact that divergence only makes sense in the
presence of recursion, and that recursion is hard to tackle axiomatically. Iso-
lated points in the ’horizontal’ dimension have however been axiomatised, most
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notably Milner’s weak bisimulation (WB) congruence [10], and also convergent
WB preorder [11], as well as divergence insensitive BB congruence [6] and stable
WB congruence [8]. It is also worth to mention the works of [3] and [1], which
axiomatised divergence sensitive WB congruence and convergent WB preorder,
respectively, but without showing completeness in the presence of recursion.

This paper develops complete axiomatisations for the ’horizontal’ dimension
of weak bisimulation equivalence. A lattice of distinguishing axioms is shown
to characterise the distinct semantics of divergence, and to precisely reflect the
’horizontal’ lattice structure of the spectrum. We are confident that these ax-
ioms form the basis of complete axiomatisation for the bisimulation spectrum
spanning from WB to BB.

The paper is organised as follows. Section 2 introduces the necessary notation
and definitions, while Section 3 recalls the weak bisimulation equivalences and
Section 4 introduces the axiom systems. Section 5 is devoted to soundness of the
axioms and sets the ground for the completeness proof. Section 6 is devoted to
the main step of the proof, only focusing on closed expressions, while Section 7
covers open expressions. Section 8 concludes the paper. Proofs that are omitted
in this extended abstract will appear in the extended version of this paper.

2 Preliminaries

We assume a set of variables V , and a set of actions A , containing the silent
action τ . We consider the set of open finite state agents with silent moves and
explicit divergence, given as the set E of expressions generated by the grammar

E ::= a.E | E + E | recX.E | X | ∆(E)
where X ∈ V and a ∈ A . ∆(E) is an expression that adds divergence explicitly
to the root of E. It can be considered as a syntactic shorthand for recX.(τ.X+E)
provided X does not occur in E. The explicit representation of divergence by
means of ∆ will prove handy in the sequel.

The syntactic equality on E is denoted by ≡. With V(E) we denote the set
of all variables that are free in E ∈ E , i.e., not bounded by a recX-operator.
We define P = {E ∈ E | V(E) = ∅}. We use E,F,G,H, . . . (resp. P,Q,R, . . . )
to range over expressions from E (resp. P ). If F = F1, . . . , Fn is a sequence
of expressions, X = X1, . . . , Xn is a sequence of variables, and E ∈ E then
E{F /X} denotes the expression that results from E by simultaneously replacing
all free occurrences of Xi in E by Fi (1 ≤ i ≤ n). The variable X is guarded
in E, if every free occurrence of X in E lies within a subexpression of the form
a.F with a ∈ A \{τ}, otherwise X is called unguarded in E. E is guarded if for
every subexpression recY.F of E the variable Y is guarded in F .

The semantics of E is given as the least transition relation satisfying the
following rules, which are standard (except that, as indicated before, ∆(E) can
diverge, in addition to exhibiting all the behaviour of E).

a.E
a−→ E

E
a−→ E′

E + F
a−→ E′

E
a−→ E′

F + E
a−→ E′
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E{recX.E/X} a−→ E′

recX.E
a−→ E′

E
a−→ E′

∆(E) a−→ E′ ∆(E) τ−→ ∆(E)

3 The Bisimulations

Since we are working in the context of silent steps, we define a few standard
abbreviations: E =⇒ F if E τ−→∗F ; E

a=⇒ F if E =⇒ a−→=⇒ F ; E
â=⇒ F if

(E a=⇒ F and a 
= τ) or (E =⇒ F and a = τ). We write E
a−→ (resp. E −→)

if E a−→ F for some F ∈ E (resp. E a−→ F for some a ∈ A , F ∈ E ). With
E

a−→/ and E −→/ we denote the corresponding negated conditions. We let E ⇑
denote E τ−→ω, i.e., E has the possibility to diverge. Finally, E � denotes that
there is some F such that E =⇒ F and either F ⇑ or F −→/ (or equivalently,
E ⇑ or E =⇒ F −→/ for some F ), i.e., E may either diverge, or silently decide
to terminate. For a relation R ⊆ P × P define the following conditions (in all
conditions P,Q, P ′ ∈ P and a ∈ A are implicitly ∀-quantified):

(WB) if (P,Q) ∈ R ∧ P
a−→ P ′ then Q

â=⇒ Q′ ∧ (P ′, Q′) ∈ R for some Q′,
(S) if (P,Q) ∈ R ∧ P

τ−−→/ then Q =⇒ Q′ τ−−→/ for some Q′,
(0) if (P,Q) ∈ R ∧ P −→/ then Q =⇒ Q′ −→/ for some Q′,
(∆) if (P,Q) ∈ R ∧ P ⇑ then Q ⇑,
(λ) if (P,Q) ∈ R ∧ P � then Q � .

Let R ⊆ P × P be a symmetric relation. We say that R is a

– weak bisimulation (WBε or simplyWB) if R satisfies (WB).
– stable weak bisimulation (WBS) if R satisfies (WB) and (S).
– completed weak bisimulation (WB0) if R satisfies (WB) and (0).
– divergent weak bisimulation (WBλ) if R satisfies (WB) and (λ).
– divergent stable weak bisimulation (WB∆) if R satisfies (WB) and (∆).

In the sequel, we let ∗ range over the set {∆,λ, S, 0, ε}. The relation ∼∗ ⊆ P ×P

is defined as the union of allWB∗, it is easily seen to be itself aWB∗ as well as
an equivalence relation.

Theorem 1. [5] The equivalences ∼∗ are ordered by inclusion according to the
lattice in Figure 1. The upper relation contains the lower if and only if both are
connected by a line.

Examples that distinguish these equivalences can be found in [5]. It is a
well known deficiency that ∼∗ is not a congruence w.r.t. ’+’, moreover, for
∗ ∈ {∆,λ, S, 0} it is not a congruence w.r.t. ∆(.). For instance τ.0 ∼∆ 0, but
∆(τ.0) 
∼∆ ∆(0). To obtain the coarsest congruences in ∼∗ on P , we define each
�∗ to be the relation that contains exactly the pairs (P,Q) ∈ P ×P that satisfy
the following root conditions:

– if P a−→ P ′ then Q
a=⇒ Q′ and P ′ ∼∗ Q′ for some Q′

– if Q a−→ Q′ then P
a=⇒ P ′ and P ′ ∼∗ Q′ for some P ′
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Fig. 1. Inclusions between the
relations ∼∗
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Fig. 2. Implications between
the distinguishing axioms

We lift these relations from P to E as usual: let E, F ∈ E , and let X =
X1, . . . , Xn be a sequence of variables that contains all variables in V(E)∪V(F ).
Then E �∗ F if E{P /X} �∗ F{P /X} for all P = P1, . . . , Pn with Pi ∈ P

(analogously for ∼∗).

Theorem 2. The relation �∗ is the coarsest congruence contained in ∼∗ w.r.t.
the operators of E . All inclusions from Figure 1 carry over from ∼∗ to �∗.

4 Axioms

This section introduces a lattice of axioms characterising the above weak bisim-
ulations. For ∗ ∈ {∆,S, 0, ε}, the axioms for �∗ are given in Table 1, plus the
axiom (∗) from Table 2. The axioms for �λ are given in Table 1, plus the ax-
ioms (∆) and (λ) from Table 2. We write E =∗ F if E = F can be derived by
application of the axioms for �∗.

The axioms from Table 1 are standard [10] except of (rec5) and (rec6). Axiom
(rec5) makes divergence explicit if introduced due to silent recursion; it defines
the nature of the ∆-operator. Axiom (rec6) states the redundancy of recursion
on an unguarded variable in the context of divergence.

We discuss the distinguishing axioms in reverse order relative to how they are
listed in Table 2. Axiom (λ) characterises the property ofWBλ that divergence
cannot be distinguished when terminating. Axiom (ε) represents Milner’s ’fair’
setting, where divergence is never distinguished. The remaining three axioms
state that divergence cannot be distinguished if the process can still perform an
action to escape the divergence (0), that it cannot be distinguished if the process
can perform a silent step to escape divergence (S), and that two consecutive
divergences cannot be properly distinguished (∆). It is a simple exercise to verify
the implications between the distinguishing axioms as summarized in the lattice
in Figure 2. It nicely reflects the inclusions between the respective congruences.
The upper axioms turn into derivable laws given the lower ones (plus the core
axioms from Table 1) as axioms.

The following two ∆-unfolding laws can be derived from the axioms for �∆

(and thus for all �∗), they will be useful in Section 6.

(τ∆) ∆(E) =∆ τ.∆(E) + E (τ∆′) ∆(E) =∆ τ.∆(E)

5 Soundness and Completeness

Checking soundness of the axioms is tedious but follows standard techniques.
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Table 1. Core axioms

(S1) E + F = F + E (τ1) a.τ.E = a.E

(S2) E + (F +G) = (E + F ) +G (τ2) τ.E + E = τ.E

(S3) E + E = E (τ3) a.(E + τ.F ) = a.(E + τ.F ) + a.F

(S4) E + 0 = E

(rec1) if Y is not free in recX.E then recX.E = recY.(E{Y/X})
(rec2) recX.E = E{recX.E/X}
(rec3) if X is guarded in E and F = E{F/X} then F = recX.E

(rec4) recX.(X + E) = recX.E

(rec5) recX.(τ.(X + E) + F ) = recX.∆(E + F )
(rec6) recX.(∆(X + E) + F ) = recX.∆(E + F )

Table 2. Distinguishing axioms

(∆) ∆(∆(E) + F ) = τ.(∆(E) + F )

(S) ∆(τ.E + F ) = τ.(τ.E + F )

(0) ∆(a.E + F ) = τ.(a.E + F )

(ε) ∆(E) = τ.E

(λ) ∆(0) = τ.0

Theorem 3 (soundness). If E,F ∈ E and E =∗ F then E �∗ F .

In order to show completeness, i.e., that E �∗ F implies E =∗ F , we proceed
along the lines of [10], except for the treatment of expressions from E \P . We
will work as much as possible in the setting ofWB∆, the finest setting. As in [10]
the first step consists in transforming every expression into a guarded one:

Theorem 4. Let E ∈ E . There exists a guarded F with E =∆ F .

We do not consider ∗ = ε in the sequel because by using axiom (ε), for every
E ∈ E we find an E′ such that E′ does not contain the ∆-operator and E =ε E′.
This allows to apply Milner’s result [10] that in the absence of the ∆-operator
the axioms from Table 1 with (rec5) and (rec6) replaced by Milner’s rec-laws
(recX(τ.X +E) = recX(τ.E) and recX.(τ.(X +E)+F ) = recX.(τ.X +E+F ),
both can be easily derived from (rec5) and (ε)) are complete for �ε.

The basic ingredients of the completeness proof are equation systems, and the
manner in which these systems are set up constitutes the crucial deviation from
the proof of Milner. Before we give detailed account of the proof, we illustrate
the strategy by a small, informal example.

Consider an equation such asX = a.X. This equation is said to have a unique
solution modulo Milner’s observational congruence �ε, since all expressions of E

that satisfy this equation (such as recX(a.τ.X) for instance) are related by �ε.
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But, if we consider a = τ , various inequivalent expressions satisfy the equation
X = τ.X (such as τ.0 and τ.b.0, for b 
= τ). So, this equation is said to not have a
unique solution modulo �ε, and therefore Milner resorts to ’guarded’ equations
only (and treats unguarded expressions in a preprocessing step analogously to
Theorem 4). In principle, the situation is not much different for �∆, where the
equation X = τ.X does neither possess a unique solution, since ∆(E) satisfies
it, for arbitrary E ∈ E (in other words and as in [10], the axiom (rec3) is
only sound if restricted to guarded expressions). However, we cannot erase all
divergence in a preprocessing step, simply because the relations considered are
divergence sensitive, and thus divergence must somehow be kept during the
entire completeness proof. To solve this problem we use ∆ as a placeholder. It
’swallows’ divergence whenever it arises during the transformations, and hence
to ensure ’guardedness’ even in the presence of divergence. Concretely, we use
equation systems that treat ∆ as a ’first class’ citizen: For each variable X
occuring in an equation, we provide a ’divergent copy’X∆ together with the
equation X∆ = ∆(X). With this twist, it is still a matter of precise bookkeeping
to establish the proof.

Let V ⊆ V be a set of variables and let X = X1, . . . , Xn be an ordered
sequence of variables, where Xi 
∈ V . An equation system over the free variables
V and the formal variables X is a set of equations E = {Xi = Ei | 1 ≤ i ≤ n}
such that Ei ∈ E and V(Ei) ⊆ {X1, . . . , Xn} ∪ V for 1 ≤ i ≤ n. Let F =
F1, . . . , Fn be an ordered sequence of expressions. Then F ∗-provably satisfies
the equation system E if Fi =∗ Ei{F /X} for all 1 ≤ i ≤ n. An expression F
∗-provably satisfies E if there exists a sequence of expressions F1, . . . , Fn, which
∗-provably satisfies E and such that F ≡ F1. We say that E is guarded if there
exists a linear order ≺ on the variables {X1, . . . , Xn} such that whenever the
variable Xj is unguarded in the expression Ei then Xj ≺ Xi.

For the next definition we take for each formal variable Xi (1 ≤ i ≤ n)
a corresponding formal variable X∆

i such that X∆
i 
∈ {X1, . . . , Xn} ∪ V . The

symbols α, β, γ, . . . denote either ∆ or . If e.g. α = then Xα
i ≡ Xi and

α(E) ≡ E. A standard equation system (SES) E over the free variables V and
the formal variables X1, X

∆
1 , . . . , Xn, X

∆
n is an equation system of the form

E = {Xi = Ei | 1 ≤ i ≤ n} ∪ {X∆
i = ∆(Xi) | 1 ≤ i ≤ n}

where Ei is a sum of expressions a.Xj (a ∈ A , 1 ≤ j ≤ n), τ.X∆
j (1 ≤ j ≤ n), and

variables Y ∈ V . We also say briefly that E is an SES over the free variables V and
the formal variables X = X1, . . . , Xn. If the sequence F1, ∆(F1), . . . , Fn, ∆(Fn)
∗-provably satisfies the SES E then we say briefly that F = F1, . . . , Fn ∗-provably
satisfies E . Furthermore Ei{F /X} denotes the expression that results from sub-
stituting in Ei the variable Xα

i by α(Fi), where 1 ≤ i ≤ n and α ∈ { , ∆}. We
write Xα

i
a−→E Xβ

j if Ei contains the summand a.Xβ
j . Note that Xi

a−→E Xβ
j if

and only if X∆
i

a−→E Xβ
j . The notions X

α
i =⇒E Xβ

j , X
α
i

a=⇒E Xβ
j , Xi −→/ E , . . .

are derived from the relations a−→E analogously to the corresponding notions in
Section 3. If the SES E is clear from the context then we will omit the subscript E
in the following. Note that E is guarded if and only if the relation τ−→E is acyclic.
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Finally, the SES E is saturated if for all 1 ≤ i, j ≤ n and α, β, if Xi
a=⇒ Xα

j then
also Xi

a−→ Xα
j (since we use this notion only for systems without free variables,

we do not need Milner’s saturation condition for free variables). The introduc-
tion of the new variables X∆

i and the special form of an SES is crucial in order
to carry over Milner’s saturation property in the presence of the ∆-operator:

Theorem 5. Every guarded expression E ∗-provably satisfies a guarded and sat-
urated SES over the free variables V(E).

Using axiom (rec3), the following theorem can be shown analogously to [10].

Theorem 6. Let E,F ∈ E and let E be a guarded equation system (not neces-
sarily an SES) such that both E and F ∗-provably satisfy E. Then E =∗ F .

6 Joining Two Equation Systems

In this section we restrict to expressions from P . Our main technical result is

Theorem 7. Let P,Q ∈ P such that P �∗ Q. Furthermore P (resp. Q) ∗-
provably satisfies the guarded and saturated SES E1 = {Xi = Ei | 1 ≤ i ≤ m}
(resp. E2 = {Yj = Fj | 1 ≤ j ≤ n}). Then there exists a guarded equation system
E (not necessarily an SES) such that both P and Q ∗-provably satisfy E.
Let us postpone the proof of Theorem 7 for a moment and first see how com-
pleteness for P can be deduced:

Theorem 8 (completeness for P ). If P,Q ∈ P and P �∗ Q then P =∗ Q.

Proof. By Theorem 4 there exist guarded expressions P ′, Q′ with P ′ =∆ P and
Q′ =∆ Q. In particular, also P ′, Q′ ∈ P and P ′ �∗ Q′ (due to soundness). By
Theorem 5, P ′ (resp. Q′) ∗-provably satisfies a guarded and saturated SES E1
(resp. E2) without free variables. By Theorem 7 there is some guarded equation
system E which is ∗-provably satisfied by P ′ and Q′. Theorem 6 gives P ′ =∗ Q′,
and hence P =∗ Q, concluding the proof. ��
In order to prove Theorem 7, we need the following two lemmas.

Lemma 1. Let E be a guarded SES over the formal variables X1, . . . , Xn, and
let Xi be such that there do not exist k, α, and a ∈ A \{τ} with Xi

a=⇒E Xα
k .

Then there exist j, β with Xi =⇒E Xβ
j −→/ .

Proof. Induction along =⇒E , which is a partial order for a guarded SES. ��
For the further consideration it is useful to define a macro M∗(P ) for P ∈ P by

M∗(P ) =



P ⇑ if ∗ = ∆,
P

τ−→ if ∗ = S,
P −→ if ∗ = 0,
P � if ∗ = λ.
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Lemma 2. If ∆(P ) ∼∗ ∆(Q) then one of the following three cases holds:

1. M∗(P ) and P ∼∗ ∆(Q)
2. M∗(Q) and ∆(P ) ∼∗ Q
3. Neither M∗(P ) nor M∗(Q), and P ∼∗ Q

Now we are able to prove Theorem 7.

Proof (Theorem 7). Assume that E1 is ∗-provably satisfied by the expressions
P1, . . . , Pm ∈ P , where P ≡ P1, and that E2 is ∗-provably satisfied by the
expressions Q1, . . . , Qn ∈ P , where Q ≡ Q1. Thus Pi =∗ Ei{P /X} and Qj =∗

Fj{Q/Y }, and hence also Pi �∗ Ei{P /X} and Qj �∗ Fj{Q/Y }. Since P,Q ∈
P , both E1 and E2 do not have free variables. The proof of the following two
claims is tedious but straight-forward by using saturation of E1 and E2.

Claim 1 If α(Pi) ∼∗ β(Qj) then the following implications hold:

1. If Xi
a−→ Xγ

k then either (a = τ and γ(Pk) ∼∗ β(Qj)) or there exist �, δ
such that Yj

a−→ Y δ
� and γ(Pk) ∼∗ δ(Q�).

2. If Yj
a−→ Y δ

� then either (a = τ and α(Pi) ∼∗ δ(Q�)) or there exist k, γ such
that Xα

i
a−→ Xγ

k and γ(Pk) ∼∗ δ(Q�).
3. Let ∗ = ∆. If α = ∆ then either β = ∆ or Yj

τ−→ Y ∆
� for some �.

4. Let ∗ = ∆. If β = ∆ then either α = ∆ or Xi
τ−→ X∆

k for some k.
5. Let ∗ = λ. If α = ∆ or (α = and Xi −→/ ) then either β = ∆, or (β =
and Yj −→/ ), or Yj

τ−→ Y ∆
� for some �, or Yj

τ−→ Y� −→/ for some �.
6. Let ∗ = λ. If β = ∆ or (β = and Yj −→/ ) then either α = ∆, or (α =
and Xi −→/ ), or Xi

τ−→ X∆
k for some k, or Xi

τ−→ Xk −→/ for some k.

Claim 2 If Pi �∗ Qj then the following implications hold:

1. If Xi
a−→ Xα

k then there exist �, β such that Yj
a−→ Y β

� and α(Pk) ∼∗ β(Q�).
2. If Yj

a−→ Y β
� then there exist k, α such that Xi

a−→ Xα
k and α(Pk) ∼∗ β(Q�).

Now take for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, and α, β with α(Pi) ∼∗ β(Qj) a variable
Zα,β

i,j , and let Z = Z ,
1,1 , . . . be a sequence consisting of these variables (since

P1 �∗ Q1, Z
,

1,1 is defined). Moreover, if α(Pi) ∼∗ β(Qj) and either α = or
β = then we define Gα,β

i,j as the sum, which contains the summand

a.Zγ,δ
k,� if Xi

a−→ Xγ
k , Yj

a−→ Y δ
� , and γ(Pk) ∼∗ δ(Q�),

τ.Zγ,β
k,j if Xi

τ−→ Xγ
k but ¬∃�, δ : Yj

τ−→ Y δ
� ∧ γ(Pk) ∼∗ δ(Q�)

(this implies by Claim 1(1) that γ(Pk) ∼∗ β(Qj)),

τ.Zα,δ
i,� if Yj

τ−→ Y δ
� but ¬∃k, γ : Xi

τ−→ Xγ
k ∧ γ(Pk) ∼∗ δ(Q�)

(this implies by Claim 1(2) that α(Pi) ∼∗ δ(Q�)).
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Furthermore Gα,β
i,j does not contain any other summands. Now the equation

system E over the formal variables Z contains for each variable Zα,β
i,j in Z the

corresponding equation below, where for equation (E1) by Lemma 2 one of the
three cases listed in (E1) holds (if the first and the second case hold, then we
choose arbitrarily one of the two corresponding equations for (E1)).

(E1) Z∆,∆
i,j =



Z ,∆

i,j if M∗(Pi) and Pi ∼∗ ∆(Qj)

Z∆,
i,j if M∗(Qj) and ∆(Pi) ∼∗ Qj

∆(Z ,
i,j ) if neither M∗(Pi) nor M∗(Qj), and Pi ∼∗ Qj

(E2) Zα,β
i,j = τ.Gα,β

i,j if α = ∆ 
= β or α 
= ∆ = β

(E3) Z ,
i,j = G ,

i,j

In general, E is not an SES, but from the guardedness of E1 and E2 it follows
easily that also E is guarded. We will show that P ∗-provably satisfies E , that
also Q ∗-provably satisfies E can be shown analogously. For this we define for
each variable Zα,β

i,j in Z the corresponding expression Rα,β
i,j by

R∆,∆
i,j ≡ R∆,

i,j ≡ ∆(Pi), R ,∆
i,j ≡ τ.Pi, and

R ,
i,j ≡



Pi if ∀�, δ, a

{
Yj

a−→ Y δ
� ⇒ ∃k, γ

{
Xi

a−→ Xγ
k ∧

γ(Pk) ∼∗ δ(Q�)

}}

τ.Pi if ∃�, δ
{
Yj

τ−→ Y δ
� ∧ ¬∃k, γ

{
Xi

τ−→ Xγ
k ∧

γ(Pk) ∼∗ δ(Q�)

}}

Let R = R ,
1,1 , . . . be the sequence corresponding to the sequence Z. First note

that R ,
1,1 ≡ P1 ≡ P by P1 �∗ Q1 and Claim 2(2). It remains to check that all

equations are ∗-provably satisfied when every variable Zα,β
i,j is replaced by Rα,β

i,j .
We start with equation (E1) defining Z∆,∆

i,j . The case that Z∆,∆
i,j is defined by

Z∆,∆
i,j = Z∆,

i,j is trivial, since R∆,∆
i,j ≡ R∆,

i,j ≡ ∆(Pi). Thus, the following two
cases 1 and 2 remain.
Case 1. Equation Z∆,∆

i,j = Z ,∆
i,j belongs to E : thus M∗(Pi) and Pi ∼∗ ∆(Qj).

Since R ,∆
i,j ≡ τ.Pi and R∆,∆

i,j ≡ ∆(Pi) we have to prove that τ.Pi =∗ ∆(Pi). We
distinguish on the value of ∗.
Case 1.1. ∗ = ∆: then Pi ∼∆ ∆(Qj) and hence Xi

τ−→ X∆
k for some k by

Claim 1(4). Thus there exists an expression R with (we use the derived law (τ∆′)
from Section 4) τ.Pi =∆ τ.Ei{P /X} =∆ τ.(R+τ.∆(Pk)) =∆ τ.(R+∆(Pk)) =∆

∆(R+∆(Pk)) =∆ · · · =∆ ∆(Pi).

Case 1.2. ∗ = S: then Pi ∼S ∆(Qj) and MS(Pi), i.e., Pi
τ−→. Since Pi �S

Ei{P /X}, also Ei{P /X} τ−→, i.e, Xi
τ−→, and there exist expressions R,Pk

with τ.Pi =S τ.Ei{P /X} =∆ τ.(R+ τ.Pk) =S ∆(R+ τ.Pk) =S · · · =S ∆(Pi).
Case 1.3. ∗ = 0: analogously to Case 1.2 with axiom (0) used instead of (S).
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Case 1.4. ∗ = λ: then Pi ∼λ ∆(Qj), and Claim 1(6) implies either Xi −→/ , or
Xi

τ−→ X∆
k for some k, or Xi

τ−→ Xk −→/ for some k.

Case 1.4.1. Xi −→/ , i.e., Ei ≡ 0: 1 we obtain τ.Pi =λ τ.Ei{P /X} ≡ τ.0 =λ

∆(0) =λ · · · =λ ∆(Pi).

Case 1.4.2. Xi
τ−→ X∆

k : we can conclude as in Case 1.1.

Case 1.4.3. Xi
τ−→ Xk −→/ : thus there exists R with τ.Pi =λ τ.Ei{P /X} =∆

τ.(R+ τ.0) =λ τ.(R+∆(0)) =∆ ∆(R+∆(0)) =λ · · · =λ ∆(Pi).

Case 2. Equation Z∆,∆
i,j = ∆(Z ,

i,j ) belongs to E : thus Pi ∼∗ Qj and neither
M∗(Pi) nor M∗(Qj) holds. We have either R

,
i,j ≡ Pi or R

,
i,j ≡ τ.Pi. The

case that R ,
i,j ≡ Pi is trivial, thus let us assume that R

,
i,j ≡ τ.Pi. Then there

exist �, δ such that Yj
τ−→ Y δ

� but there do not exist k, γ with Xi
τ−→ Xγ

k and
γ(Pk) ∼∗ δ(Q�). Since ∆(Pi) ∼∗ ∆(Qj) (recall that variable Z∆,∆

i,j is defined),
it follows ∆(Pi) ∼∗ δ(Q�) by Claim 1(2). Using Claim 1 we can deduce for each
value of ∗ a contradiction to ¬M∗(Qj).

It remains to check the equations (E2) and (E3). Fix α, β such that α(Pi) ∼∗

β(Qj) and either α = or β = . We will distinguish two main cases 3 and 4:

Case 3. ∀�, δ, a (Yj
a−→ Y δ

� ⇒ ∃k, γ : Xi
a−→ Xγ

k ∧ γ(Pk) ∼∗ δ(Q�)) (†)
With axiom (τ1) and (S1)-(S3) we obtain Gα,β

i,j {R/Z} =∆ Ei{P /X} =∗ Pi

(this step is analogous to [10]). In case α = = β (resp. α = , β = ∆), it is
straight-forward to show that equation (E3) (resp. (E2)) is satisfied. So assume
that α = ∆, β = . Thus ∆(Pi) ∼∗ Qj . By inspecting equation (E2) and using
the fact that R∆,

i,j ≡ ∆(Pi) and Gα,β
i,j {R/Z} =∗ Pi, we see that it remains to

show ∆(Pi) =∗ τ.Pi. We distinguish on the value of ∗.
Case 3.1. ∗ = ∆: thus ∆(Pi) ∼∆ Qj and Yj

τ−→ Y ∆
� for some � by Claim 1(3).

Hence by (†) there exist k, γ with Xi
τ−→ Xγ

k and γ(Pk) ∼∆ ∆(Q�). By
Claim 1(4) either γ = ∆ or Xk

τ−→ X∆
p for some p. Saturation of E1 implies in

both cases Xi
τ−→ X∆

p for some p, which allows to conclude as in Case 1.1.

Case 3.2. ∗ = S: we have ∆(Pi) ∼S Qj . If Qj
τ−−→/ then Pi

τ−→, and we can refer
to Case 1.2. On the other hand, if Qj

τ−→ then Fj{Q/Y } τ−→, i.e, Yj
τ−→. Thus

Xi
τ−→ by (†), which allows again to refer to Case 1.2.

Case 3.3. ∗ = 0: analogous to Case 3.2.
Case 3.4. ∗ = λ: since ∆(Pi) ∼λ Qj , Claim 1(5) implies either Yj −→/ , or
Yj

τ−→ Y ∆
� , or Yj

τ−→ Y� −→/ for some �.

Case 3.4.1. Yj −→/ : by Claim 1(1) there cannot exist a ∈ A \{τ} with Xi
a=⇒.

Lemma 1 and the saturation of E1 imply either Xi −→/ , or Xi
τ−→ X∆

k for some
k, or Xi

τ−→ Xk −→/ for some k. We can proceed as in Case 1.4.
1 Note that if we would deal with equation systems containing free variables, then we
could only conclude here that Ei must be a sum of free variables. This is the reason
why Theorem 7 requires that P, Q ∈ P , i.e., that V(P ) = V(Q) = ∅.
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Case 3.4.2. Yj
τ−→ Y ∆

� for some �: by (†) there exist k, γ with Xi
τ−→ Xγ

k and
γ(Pk) ∼λ ∆(Q�). By Claim 1(6) either γ = ∆, or (γ = and Xk −→/ ), or
Xk

τ−→ X∆
p for some p, or Xk

τ−→ Xp −→/ for some p. By saturation we obtain
either Xi

τ−→ X∆
p for some p (see Case 1.4.2), or Xi

τ−→ Xp −→/ for some p (see
Case 1.4.3).

Case 3.4.3. Yj
τ−→ Y� −→/ for some �: by (†) there exist k, γ with Xi

τ−→ Xγ
k

and γ(Pk) ∼λ Q�. Using Claim 1(6) we can conclude as in Case 3.4.2.

Case 4. ∃�, δ (Yj
τ−→ Y δ

� ∧ ¬∃k, γ : Xi
τ−→ Xγ

k ∧ γ(Pk) ∼∗ δ(Q�))

We get Gα,β
i,j {R/Z} =∆ Ei{P /X}+ τ.α(Pi) =∗ Pi+ τ.α(Pi) (as in Case 3, this

step is analogous to [10]).
Case 4.1. α = β = : we have R ,

i,j ≡ τ.Pi =∆ Pi+τ.Pi =∗ G ,
i,j {R/Z}, thus

(E3) is satisfied.

Case 4.2. α = , β = ∆: we obtain R ,∆
i,j ≡ τ.Pi =∆ τ.τ.Pi =∆ τ.(Pi+ τ.Pi) =∗

τ.G ,∆
i,j {R/Z}, thus (E2) is satisfied.

Case 4.3. α = ∆, β = : with (τ∆′) and (τ∆) from Section 4 we get R∆,
i,j ≡

∆(Pi) =∆ τ.∆(Pi) =∆ τ.(Pi + τ.∆(Pi)) =∗ τ.G∆,
i,j {R/Z}, thus (E2) is again

satisfied. This concludes the proof of Theorem 7 and hence of Theorem 8. ��

7 Completeness for Open Expressions

In order to prove completeness for the whole set E we will argue in a purely
syntactical way by investigating our axioms. The following observation is crucial:

Lemma 3. Let ∗ 
= 0 and E,F ∈ E . If a ∈ A \{τ} does neither occur in E nor
in F then E{a.0/X} =∗ F{a.0/X} implies E =∗ F .

Note that Lemma 3 is false for ∗ = 0. We have τ.a.0 =0 ∆(a.0) but τ.X 
=0 ∆(X)
(since τ.0 
�0 ∆(0)). Hence, in the following theorem we have to exclude ∗ = 0.
Theorem 9. Let ∗ 
= 0 and E,F ∈ E . If E �∗ F then E =∗ F .

Proof. Let E �∗ F . We prove by induction on |V(E) ∪ V(F )| that E =∗ F . If
V(E) ∪ V(F ) = ∅ then in fact E,F ∈ P and E =∗ F by Theorem 8. Thus let
X ∈ V(E) ∪ V(F ). Since E �∗ F , we have E{a.0/X} �∗ F{a.0/X}. Thus by
induction E{a.0/X} =∗ F{a.0/X} and hence E =∗ F by Lemma 3. ��
In order to obtain completeness for �0 on open expressions, we have to introduce
the following additional axiom (E ), which can be shown to be sound for �0.

(E ) If E{0/X} = F{0/X} and E{a.0/X} = F{a.0/X} where
a ∈ A \{τ} does neither occur in E nor in F then E = F .

If we add this axiom to the standard axioms for �0 then we can prove complete-
ness in the same way as in the proof of Theorem 9.

Theorem 10. Let E,F ∈ E . If E �0 F then E =0 F can be derived by the
standard axioms for �0 plus the axiom (E ).



596 M. Lohrey, P.R. D’Argenio, and H. Hermanns

8 Conclusion

This paper has developed sound and complete axiomatisations for the divergence
sensitive spectrum of weak bisimulation equivalences. We have not covered the
weak bisimulation preordersWB↓ andWB↓↓ considered in [5]. We claim however
that adding the axiom ∆(E) ≤ E +F to the axioms ofWBλ (respectivelyWB∆)
is enough to obtain completeness ofWB↓↓ (WB↓). Note thatWB↓ is axiomatised
in [11], so onlyWB↓↓ needs further work.

We are confident that our axiomatisation form the basis of a complete equa-
tional characterisation of the bisimulation fragment of the linear time – branch-
ing time spectrum with silent moves. On the technical side, we are currently
investigating whether the somewhat unsatisfactory auxiliary axiom (E ) is in-
deed necessary for achieving completeness of open expressions for �0.
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