
Quantitative Model Checking Revisited:
Neither Decidable Nor Approximable!

Sergio Giro and Pedro R. D’Argenio

FaMAF, Universidad Nacional de Córdoba - CONICET
Ciudad Universitaria - 5000 Córdoba - Argentina

{sgiro,dargenio}@famaf.unc.edu.ar

Abstract. Quantitative model checking computes the probability val-
ues of a given property quantifying over all possible schedulers. It turns
out that maximum and minimum probabilities calculated in such a way
are overestimations on models of distributed systems in which compo-
nents are loosely coupled and share little information with each other
(and hence arbitrary schedulers may result too powerful). Therefore, we
focus on the quantitative model checking problem restricted to distrib-
uted schedulers that are obtained only as a combination of local sched-
ulers (i.e. the schedulers of each component) and show that this problem
is undecidable. In fact, we show that there is no algorithm that can com-
pute an approximation to the maximum probability of reaching a state
within a given bound when restricted to distributed schedulers.

1 Introduction

The model of Markov decision processes (MDP) [14] is a well-known formalism to
study systems in which both probabilistic and nondeterministic choices interact.
They are used in such diverse fields as operation research, ecology, economics,
and computer science. In particular, MDPs (specially composition oriented ver-
sions like probabilistic automata [15] or probabilistic modules [7]) are useful to
model and analyze concurrent systems such as distributed systems, and serve as
the input model to succesful quantitative model checkers such as PRISM [9].

Analysis techniques for MDPs require to consider the resolution of all nonde-
terministic choices in order to obtain the desired result. For instance, one may
like to use PRISM to find out which is the best probability value of reaching a
goal under any possible resolution of the nondeterminism (a concrete instance
being “the probability of reaching an error state is below the bound 0.01”). The
resolution of such nondeterminism is given by the so called schedulers (called
also adversaries or policies, see [14,1,15,5,17]). A scheduler is a function mapping
traces to transitions or moves (or, in the more general case, traces to distribu-
tions on moves). Given the nondeterministic moves available at some state, the
! Supported by the CONICET/CNRS Cooperation project “Métodos para la Verifi-

cación de Programas Concurrentes con aspectos Aleatorios y Temporizados”, AN-
PCyT project PICT 26135 and CONICET project PIP 6391. The first author was
partially supported by the LSIS, UMR CNRS 6168, France.

J.-F. Raskin and P.S. Thiagarajan (Eds.): FORMATS 2007, LNCS 4763, pp. 179–194, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

180 S. Giro and P.R. D’Argenio

G

initT initG(a)
1/21/2

headsT tailsT headsG tailsG

T

T

initT initG(b)
1/2 1/2

headsG tailsGheadsT tailsT

G

Fig. 1. T tosses a coin and G has to guess

scheduler chooses the move to perform based on the history until the actual
state. Then, by quantifying over all the possible schedulers, we obtain maximal
and minimal probabilities for (sets of) traces. Quantitative model checkers such
as [9,10,4] are based on the technique introduced in [1], in which calculations are
performed considering the set of all possible schedulers.

While this approach arises naturally, and it captures the intuitive notion of
considering all the possible combinations of choices, this arbitrary type of sched-
ulers may yield unexpected results. Consider the following example: a man tosses
a coin and another one has to guess heads or tails. Fig. 1(a) depicts the models
of these men in terms of MDPs. Man T , who tosses the coin, has only one move
which represents the toss of the coin: with probability 1/2 moves to state headsT

and with probability 1/2 moves to state tailsT . Instead, man G has two nonde-
terministic moves each one representing his choice: headsG or tailsG. An almighty
scheduler for this system may let G guess the correct answer with probability
1 according to the following sequence: first, it lets T toss the coin, and then it
chooses for G the left move if T tossed a head or the right move if T tossed a
tail. Therefore, the maximum probability of guessing obtained by quantifying
over these almighty schedulers is 1, even if T is a smart player that always hides
the outcome until G reveals his choice. In this example, in which T and G do not
share all information, we would like that the maximum probability of guessing
(i.e., of reaching any of the states (headsT , headsG) or (tailsT , tailsG)) is 1/2.
This observation is fundamental in distributed systems in which components are
loosely coupled and share little information with each other. (We remark that a
similar example is obtained under a synchronous point of view where G performs
an idling move when T tosses the coin, and T idles when G performs his choice.
See Fig. 1(b).)

This phenomenon has been first observed in [15] from the point of view of
compositionality and studied in [6,7,3,2,19] in many different settings, but none
of them aims for automatic analysis or verification with the exception of [6], in
which temporal properties are quantified over a very limited set of schedulers
(the so-called partial-information policies).

Therefore we focus on the question of model checking but, rather than con-
sidering all schedulers to calculate maximum and minimum probabilities, we
decide to consider the model checking problem under the subset of distributed
schedulers that are obtained by composing local schedulers (i.e. the schedulers
of each component). Notice that the “almighty” scheduler of the example would
not be a valid scheduler in this new setting since the choice of G depends only on

Quantitative Model Checking Revisited 181

information which is external to (and not observable by) G. Distributed sched-
ulers has been studied in [7] in a synchronous setting and in [3] in an asynchro-
nous setting, and are related to the partial-information policies of [6].

The contribution of this paper is to show that the quantitative model checking
problem, including pCTL and LTL model checking, restricted to distributed
schedulers (called schedulers for modules in the rest of the paper) is undecidable.
We prove that there is no algorithm to compute the maximum probability of
reaching a set of states using only distributed schedulers. Moreover, we show
that it is not even possible to compute an approximation of such a value within
a given bound. We focus our proof on the synchronous setting of [7] but later
show that it also applies to [3] and [6]. Since the model considered here can be
encoded in the input language of model checkers such as PRISM or Rapture,
our result equally applies to this setting. In other words, the probabilities usually
returned by these model checkers overapproximate the ones possible in the more
realistic interpretation of distributed schedulers, and there is no way to compute
or approximate these values. The proof of undecidability is based on a result
of [12] stating that it is undecidable to find an approximation to the maximum
probability of accepting a word in a probabilistic finite-state automaton.

Organization of the paper. Next section recalls the model of [7] appropriately
simplified to meet our needs. Section 3 presents the tools we use to prove unde-
cidability, including the result of [12] and its relation to our setting. The main
proof of undecidability is given in Sec. 4 together with some lemmas which are
interesting on their own. In Sec. 5 we also show that our result extends to the
models of [3] and [6], discuss other related works. Sec. 6 concludes the paper.

2 Modules and Schedulers

In this section we recall the model of [7] which gives the formal framework to
prove our undecidability result. [7] introduces (probabilistic) modules to describe
open probabilistic systems. Modules can be composed forming more complex
modules (though we will not focus on this). On the other hand, modules are
built out of atoms. Each atom groups the behavior that needs to be scheduled
together. Hence, modules can be used to model a distributed system, and atoms
can be used to model components in these distributed systems.

Each atom controls a set of variables in an exclusive manner and is allowed
to read a set of variables that it may not control. That is, each variable can
be modified at any time by only one atom but read by many. The change of
values of variables is done randomly according to moves and they can take place
whenever indicated by a transition. Thus an atom is a set of transitions that can
only read the variables that the atom may read and can only change (according
to some move) the variables that the atom controls. In what follows we give the
formalization of these concepts.

Definition 1 (States and moves). Let X be a set of variables. An X-state s
is a function mapping each variable in X to a value. An X-move a is a proba-
bility distribution on X-states. Given scalars {δi} and X-moves {ai} such that

182 S. Giro and P.R. D’Argenio

∑
i δi = 1 and δi ≥ 0, we write

∑
i δiai for the X-move resulting from the convex

combination, i.e., (
∑

i δiai) (s) =
∑

i δiai(s).

In the rest of the paper, we assume that the set of variables is finite as well as
the set of their possible values.

Definition 2 (Transitions and convex closures). Let X and Y be two sets
of variables. A probabilistic transition (s, a) from X to Y consists of an X-state
s and a Y -move a. Given a set S of transitions, the convex closure of S (denoted
by ConvexClosure(S)) is the least set containing all the transitions (s,

∑
i δiai)

for all (s, ai) ∈ S and δi as in Def. 1.

Definition 3 (Atoms). A probabilistic X-atom A consists of a set readX(A) ⊆
X of read variables, a set ctrX(A) ⊆ X of controlled variables and a finite set
Transitions(A) of transitions from readX(A) to ctrX(A).

Atoms in [7] have two sets of transitions: one like ours and another one for
initialization. In order to simplify the model, we dropped this second set and
consider a unique initial state provided by the module.

Since our result does not require a framework as general as the original, we
exclude external and private variables out of our definitions. It is easy to see
that the definition of modules below agree with that of [7] when restricted to
have only interface variables.

Definition 4 (Modules). A probabilistic X-module P has an initial state and
a finite set Atoms(P). We write Var(P) for X. The initial state Init(P) is a
Var(P)-state. Atoms(P) is a finite set of Var(P)-atoms such that (1) Var(P) =⋃

A∈Atoms(P) ctrX(A) and (2) ∀A, A′ ∈ Atoms(P) • ctrX(A) ∩ ctrX(A′) = ∅.

The semantics of a deterministic probabilistic system (i.e., Markov chains) is
given by a probability distribution on traces (called bundle in this context).
Nondeterministic probabilistic models –such as modules– exhibit different proba-
bilistic behavior depending on how nondeterministic choices are resolved. Hence,
the semantics of a module is given by a set of bundles. Each bundle of this set
responds to a different way of resolving nondeterminism. The resolution of non-
determinism is done by a scheduler. A scheduler is a function that maps traces
to distribution on possible moves. Such moves are convex combinations of the
available moves at the end of the trace.

Definition 5 (Traces and bundles). Let n be a positive integer. An X-trace
σ of length n is a sequence of X-states with n elements. We write σ(i) for the
i-th element of σ and last(σ) for the last element of σ. In addition, we write
len(σ) for the length of the sequence, and σ↓n (if n ≤ len(σ)) for the n-th prefix,
i.e., the sequence of length n in which (σ↓n) (i) = σ(i) for all 1 ≤ i ≤ n. We
denote the prefix order by σ) σ′ if σ = σ′↓len(σ).

An X-bundle of length n is a probability distribution on X-traces of length
n. The unique X-bundle of length 1, which assigns the probability 1 to the trace
consisting only of the initial state is called the initial bundle.

Quantitative Model Checking Revisited 183

Definition 6 (Schedulers). Let X and Y be two sets of variables, and s a
starting Y -state. A scheduler η from X to Y is a function mapping every X-
trace to a probability distribution on Y -states. If η is a scheduler from X to
X, then the 1-outcome of η is the bundle b1 assigning 1 to the trace s. In
addition, for all positive integers i > 1, the i-outcome of η is an inductively
defined X−bundle bi of length i: the bundle bi is the extension of the bundle bi−1
such that bi(σ) = bi−1(σ↓i−1) · (η(σ↓i−1))(σ(i)) for all X−traces of length i. We
collect the set of i-outcomes of η (i ≥ 1) in the set Outcome(η) of X−bundles.
To simplify notation, we write Outcome(η)(σ) for blen(σ)(σ).

Schedulers are the machinery to resolve nondeterminism. They do so by assigning
probabilities to the different available moves at each point of an execution (i.e.,
a trace). In our framework, this is done by choosing a move which is a convex
combination of the available moves. A scheduler can be deterministic (or non-
probabilistic) in the sense that it assigns probability 1 to a single available move.
In other words, a deterministic scheduler chooses a single move from the available
ones at each point of the execution. In particular, we are interested on the
scheduling within a single component, that is, within an atom.

Definition 7 (Schedulers for an atom). Consider a probabilistic X−atom
A. The set atomΣ(A) of atom schedulers for A contains all schedulers η from
readX(A) to ctrX(A) such that (σ(n), η(σ)) ∈ ConvexClosure(Transitions(A))
for all readX(A)-traces σ of length n ≥ 1. Let atomΣd(A) be set of determin-
istic schedulers for A, i.e., the subset of atomΣ(A) such that (σ(n), η(σ)) ∈
Transitions(A).

Schedulers for atoms can observe all possible executions and all the (observed)
state space. On the contrary, we are not interested in any arbitrary scheduler
for a module. In a distributed setting each component schedules its own moves
disregarding any behavior that does not affect its own state space. Hence, a
global scheduler can only be obtained by the combination of the schedulers
of each component. Similarly, we consider that a scheduler for a module only
makes sense if it comes from the composition of schedulers of each of its atoms.
Schedulers for a module are obtained by taking the product of schedulers for
atoms as defined in the following.

Definition 8 (Projection and Product). Let X and X ′ ⊆ X be two sets
of variables. The X ′-projection of an X-state s is the X ′-state s[X ′] such that
(s[X ′]) (x) = s(x) for all variables x ∈ X ′. The X ′-projection of a trace σ is an
X ′-trace σ[X ′] in which σ[X ′] (i) = σ(i)[X ′] for 1 ≤ i ≤ len(σ).

Let X1 and X2 be two disjoint sets of variables. The product of an X1-state s1
and an X2-state s2 is the X1 ∪X2-state s1 × s2 such that (s1 × s2) (x1) = s1(x1)
for all x1 ∈ X1 and (s1 × s2) (x2) = s2(x2) for all x2 ∈ X2. The product of
an X1-move a1 and an X2-move a2 is the X1 ∪ X2-move a1 × a2 such that
(a1 × a2) (s) = a1(s[X1]).a2(s[X2]).

Definition 9 (Product of schedulers). If η1 is a scheduler from X1 to Y1,
and η2 is a scheduler from X2 to Y2, such that Y1 ∩ Y2 = ∅, then the product

184 S. Giro and P.R. D’Argenio

is the scheduler η1 × η2 from X1 ∪ X2 to Y1 ∪ Y2 such that (η1 × η2)(σ) =
η1(σ[X1]) × η2(σ[X2]) for all X1 ∪ X2-traces σ. If Σ1 and Σ2 are two sets of
schedulers, then Σ1 × Σ2 = {η1 × η2|η1 ∈ Σ1 and η2 ∈ Σ2}.

Since we restrict to modules without external variables, our definition of sched-
uler for a module is simpler than that of [7]. It is easy to see that the definition
of schedulers below agree with that in [7] when restricted to our setting.

Definition 10 (Schedulers for a module). Consider a probabilistic module
P . The set modΣ(P) of module schedulers for P contains all the schedulers
from Var(P) to Var(P) having Init(P) as starting state which can be written
as a product of schedulers for the atoms, i.e.: modΣ(P) = {

∏
A∈Atoms(P) ηA |

ηA ∈ atomΣ(A)}. Let modΣd(P) be the set of deterministic schedulers for the
module, i.e., modΣd(P) = {

∏
A∈Atoms(P) ηA | ηA ∈ atomΣd(A)}.

Each scheduler defines a probability space on the set of infinite traces as stated
below.

Definition 11 (Extensions and probability of traces). For each finite
trace σ of length n, we define the set of extensions [σ] to be set of infinite
traces such that for every ρ ∈ [σ], ρ(n′) = σ(n′) for all 1 ≤ n′ ≤ n.

Let be P a probabilistic module whose variables are Var(P), and let η ∈
modΣ(P) be a scheduler for P . The probability Prη([σ]) of a set of extensions
is Outcome(η)(σ). This probability can be extended in the standard way to the
least σ-algebra over the set of infinite traces containing the extensions (see [11]).

Given the setting in the previous definition, one can talk of the probability
Prη(reach(U)) of reaching the set of states U under η. Such probability is given
by Prη({ρ | ∃n • ρ(n) ∈ U}).

In the following, we define several shorthands and notations that will be con-
venient for the rest of the paper.

Let enA(s) be the set of enabled moves in a Y -state s of an X-atom A with
X ⊆ Y ; that is, the set {a | (s[readX(A)] , a) ∈ Transitions(A)}.

A scheduler η for an X-atom A is a function from readX(A)-traces to distri-
butions on ctrX(A) such that (last(σ), η(σ)) ∈ ConvexClosure(Transitions(A)).
That is, η(σ) =

∑
a∈enA(s) δaa, where

∑
a∈enA(s) δa = 1. Hence, η can be alter-

natively seen as a function ηf : ctrX(A)-moves × readX(A)-traces → [0, 1], s.t.
ηf (a,σ) = δa for all a ∈ enA(s), and 0 otherwise. Conversely, if ηf (a,σ) > 0 ⇒
a ∈ enA(last(σ)) and

∑
a∈enA(last(σ)) ηf (a,σ) = 1, for all trace σ, ηf defines a

scheduler η s.t. η(σ) =
∑

a∈enA(s) ηf (a,σ) a. We will use η and ηf interchange-
ably according to our convenience.

If η is a scheduler for the module P , we will call ηA to the scheduler for the
atom A of P such that η = ηA ×

∏
A′∈Atoms(P)\{A} ηA′ . If η is deterministic and

Atoms(P) = A1, . . . , An we ambiguously denote by η(σ) the n-tuple of moves
(a1, . . . , an) such that η(σ)(a1, . . . , an) = 1. Notice that ηAi(σ) = ai = πi(η(σ))
for all 1 ≤ i ≤ n.

Quantitative Model Checking Revisited 185

3 The Setting for the Proof of Undecidability

In this section we present the foundations for the proof of undecidability. We
recall the result in [12] stating that it is undecidable to find an approximation
to the maximum probability of accepting a word in a probabilistic finite-state
automaton (PFA), and present a translation of PFAs into probabilistic modules.
This setting is used in Sec. 4 to prove that it is not possible to determine the
maximum probability of reaching a given set of states in a module. The maximum
reachability problem is formally stated as follows:

Definition 12 (Maximum Reachability Problem). Let P be a module, let
U be a set of Var(P)-states, and let reach(U) = {ρ | ∃n • ρ(n) ∈ U} be the set of
all infinite traces that pass through some state in U . The maximum reachability
problem is to determine supη∈modΣ(P) Prη(reach(U)).

In the following, we assume that any trace that reaches some state in U remains
in U with probability 1. It is a standard assumption in reachability analysis
of Markov decision processes in general to make target states absorbing (see
e.g. [14,1,12]). The assumption in our setting is formally stated as follows.

Assumption 1 (States in U are absorbing). Given an instance of the max-
imum reachability problem, we assume that the elements in U are absorbing, in
the sense that ∀s ∈ U • Prη([σ s]) = Prη(

⊎
s′∈U [σ s s′]) for all η.

The proof presented in the next section is based on the reduction of the prob-
abilistic finite-state automata (PFA) maximum acceptance problem [12] to the
maximum reachability problem on a module. Since this problem is undecidable,
this reduction implies the undecidability of the maximum reachability problem.

A PFA is a quintuple (Q,Σ, l, qi, qf) where Q is a finite set of states with
qi, qf ∈ Q being the initial and accepting state respectively, Σ is the input
alphabet, and l : Σ × Q → (Q → [0, 1]) is the transition function s.t. l(α, q) is a
distribution for all α ∈ Σ and q ∈ Q. Notice that l is a total function. As in [12],
we assume that qf is absorbing, i.e. l(α, qf)(qf) = 1 for all α ∈ Σ.

In the following, we present the translation of PFA into modules and directly
define the probability of accepting a word in the translated model. We do so to
avoid introducing a probabilistic theory on traces for a slightly different setting.

A PFA is encoded in a module PPFA with two variables and two atoms.
Variable st pfa takes values in Q recording the current state in the PFA. Variable
symbol takes values in Σ ∪{initial} and is used to indicate the next input issued
to the PFA. In particular, initial is introduced for technical matters and only
used in the first transition of the module to indicate that no selection has being
issued yet. Atom A encodes the transition function l. Therefore it can read both
variables, but can only control st pfa. It is atom B the one that controls variable
symbol and the one that introduces the nondeterminism in the selection of the
input. Notice that A is completely deterministic (in the sense that, at every
state, the value of symbol uniquely determines the next transition to execute).
Since B takes the role of the environment selecting inputs, it cannot read (nor

186 S. Giro and P.R. D’Argenio

1/2 1/2

Probabilistic finite state automata Probabilistic module

2/3 1/3
1/22/3

1/3 1/2

α

symbol ← β

symbol ← α
symbol = initial

β

sym
bol = α symbol = β

Fig. 2. From PFA to probabilistic modules

control) variable st pfa. Hence, a word w over Σ is equivalent to the deterministic
scheduler for B that chooses the symbols in the word.

The definition of PPFA is formalized in the following.

Definition 13 (PPFA and the probability of accepting a word). Let X =
{st pfa, symbol}. Let A be an X-atom with readX(A) = X and ctrX(A) =
{st pfa}, such that (1) en(s) = {al,s} for all s such that s(symbol) 0= initial,
where al,s(s′) = l(s(symbol), s(st pfa))(s′(st pfa)) for all {st pfa}-state s′, and
(2) en(s) = {as} for all s such that s(symbol) = initial, where as(s) = 1. Let
B be an X-atom with readX(B) = ctrX(B) = {symbol}, and for all state s
and symbol α it contains transition (s, aα), where aα(symbol = α) = 1. PPFA is
defined as the module containing atoms A and B above and having initial state
si such that si(st pfa) = qi and si(symbol) = initial.

Let U = {s | s(st pfa) = qf} be the set of accepting states. Then, the probabil-
ity Pr(accepting w) of accepting an infinite word w = w1w2 · · · of symbols from
Σ is PrηA×ηB (reach(U)), where ηB(σ) = awlen(σ)−1 (if len(σ) > 1), ηB(s) = as

and ηA is the only possible deterministic scheduler for A.

Atom A is deterministic, since it has exactly one enabled move at every state.
Hence there exists only one possible scheduler for A (the scheduler choosing
the only possible move). In addition, it is also worth noting that, although we
are dealing with infinite words, our criterion for acceptance is to pass through
the accepting state using the word (i.e., a word is accepted iff a finite prefix
reaches the accepting state). Figure 2 shows a simple PFA and its corresponding
probabilistic module. In this figure, symbol = α indicates that the transition
needs the value of the variable symbol to be α. In addition, symbol ← α indicates
that the transition sets the value of the variable symbol to α.

Stated in terms of Def. 13, Corollary 3.4 in [12] states the following:

Lemma 1 (Corollary 3.4 in [12]). For any fixed 0 < ε < 1, the following
problem is undecidable: Given a module PPFA as in Def. 13 such that either

1. PPFA accepts some word with probability greater than 1 − ε, or
2. PPFA accepts no word with probability greater then ε;

decide whether case 1 holds.

[12] points out that, as a consequence of Lemma 1, the approximation of the
maximum acceptance probability is also undecidable. This statement is formal-
ized in the following corollary.

Quantitative Model Checking Revisited 187

Corollary 1 (Approximation of the maximum acceptance probability
is undecidable). Given PPFA as in Def. 13 and δ > 0, the following problem
is undecidable: find r such that |r − supw Pr(accept w)| < δ.

4 Undecidability of the Reachability Problem for
Modules

In this section, we prove the undecidability of the maximum reachability prob-
lem. Recall that the maximum reachability problem is to find the supremum over
the set of all the schedulers for a given module. First of all, we show that infinite
words can be seen as deterministic schedulers (Lemma 2). So, the problem of
finding the supremum over the set of words is equivalent to the problem of find-
ing the supremum over the set of deterministic schedulers. Next, we prove that
the supremum quantifying over deterministic schedulers equals the supremum
quantifying over all schedulers (Lemma 4) using the fact that, given a scheduler
and a number N , a deterministic scheduler can be found which yields a larger
probability until the N -th step (Lemma 3).

In the following, we prove not only the undecidability of the maximum reach-
ability problem on modules, but also that the value of the maximum reachability
probability cannot be approximated, i.e. given a certain threshold δ, there is no
algorithm returning r such that |r − supη∈modΣ(P) Prη(reach(U))| < δ.

The following lemma states that each word in the PFA can be seen as a
deterministic scheduler in PPFA and vice versa.

Lemma 2 (Words and schedulers). Given PPFA as in Def. 13, each word
w corresponds to a deterministic scheduler η and vice versa, in the sense that
Pr(accepting w) = Prη(reach(U)).

Proof. By definition, Pr(accepting w) = PrηA×ηB (reach(U)), with ηA and ηB as
in Def. 13.

Conversely, let η be a deterministic scheduler for PPFA. Then η = ηA × ηB for
some ηA (which is unique) and ηB. Note that, for any n > 0, there is exactly
one {symbol}-trace σn having probability greater than 0 and len(σn) = n which
is defined by ηB. This is due to the fact that B has no probabilistic transitions
and A cannot change the variable symbol. Then, take w = w1 · w2 · · · to be the
word defined by wn = last(σn+1). (σ1 is ignored since variable symbol has the
value initial in the first state.) 23

As a consequence of Lemma 2 and Corollary 1 the computation of the maximum
reachability probability restricted to deterministic schedulers –i.e. the compu-
tation of supη∈modΣd(P) Prη(reach(U))– is an undecidable problem in general
since it is undecidable for the particular case of modules obtained from PFA as
in Def. 13. However, this fact does not guarantee that the problem is also unde-
cidable when all module schedulers (not only deterministic ones) are considered
(in fact, the problem is decidable for arbitrary global schedulers [1,5]). Our main
contribution is to show that the problem is undecidable even if schedulers are
not restricted to be deterministic.

188 S. Giro and P.R. D’Argenio

The following lemma states that given a scheduler and a bound N , there is a
deterministic scheduler that yields a larger probability of reaching U within the
first N steps.

Lemma 3. Given a scheduler η and N ∈ N there exists a deterministic sched-
uler ηd such that Prηd(reachN (U)) ≥ Prη(reachN (U)), where Prη(reachN (U))
denotes the probability of reaching U before the N -th step.

Proof. Given an atom A∗, a readX(A∗)-trace σ∗ such that len(σ∗) ≤ N and a
scheduler η =

∏
A∈Atoms(P)\{A∗} ηA × ηA∗ , we find a scheduler det(η,σ∗) such

that det(η,σ∗) coincides with η except for the choice corresponding to the trace
σ∗ in the atom A∗, in which det(η,σ∗) deterministically chooses a single action.
Formally, det(η,σ∗) can be expressed in terms of η as follows: det(η,σ∗) =∏

A∈Atoms(P)\{A∗} ηA × η′
A∗ , with η′

A∗(σ∗, a∗) = 1 for some a∗ and η′
A∗(σ, a) =

ηA∗(σ, a) for all σ 0= σ∗. In addition, in the construction of det(η,σ∗) we choose
a∗ such that Prdet(η,σ∗)(reachN (U)) ≥ Prη(reachN (U)). The core of the proof is
to find such an a∗. Once obtained det(η,σ∗) for a trace σ∗, the final deterministic
scheduler is calculated by repeating this process for all the local traces with
length less than or equal to N .

In the following, let k = len(σ∗) and define rN = {σ| len(σ) = N ∧σ(N) ∈ U},
rN,σ∗ = rN ∩ {σ|σ↓k[readX(A∗)] = σ∗} and rN,¬σ∗ = rN \ rN,σ∗ .

Note that, because of Assumption 1, Prη(reachN (U)) = Prη(
⊎

σ∈rN
[σ]), since

Prη(
⊎

s′
i∈U [σss′1 · · · s′N−(len(σ)+1)]) = Prη([σs]) for all s ∈ U .

Now, we start the calculations to find a∗.

Prη(reachN (U)) = Prη(
⊎

σ∈rN
[σ]) {Explanation above}

=
∑

σ∈rN
Prη([σ]) {Pr is a measure}

=
∑

σ∈rN,σ∗ Prη([σ]) +
∑

σ∈rN,¬σ∗ Prη([σ]) {Commutativity}

Next, we examine the first summand. In the following calculation, let Pσ,i,A =∑
a∈enA(σ(i)) ηA(σ↓i[readX(A)] , a) a(σ(i + 1)).

∑
σ∈rN,σ∗ Prη([σ])

= {Definition 11}∑
σ∈rN,σ∗

∏N−1
i=1

∏
A∈Atoms(P)

∑
a∈enA(σ(i)) ηA(σ↓i[readX(A)] , a) a(σ(i + 1))

= {Arithmetics}∑
σ∈rN,σ∗ Prη([σ↓k])(∑

a∈enA∗ (σ(k)) ηA∗(σ↓k[readX(A∗)] , a) a(σ(k + 1))
)

∏
A∈Atoms(P)\{A∗} Pσ,k,A∏N−1
i=k+1

∏
A∈Atoms(P) Pσ,i,A

= {σ↓k[readX(A∗)] = σ∗ (since σ ∈ rN,σ∗), arithmetics}∑
a∈enA∗ (σ∗(k)) ηA∗(σ∗, a)∑

σ∈rN,σ∗ Prη([σ↓k]) a(σ(k + 1))∏
A∈Atoms(P)\{A∗} Pσ,k,A∏N−1
i=k+1

∏
A∈Atoms(P) Pσ,i,A

Quantitative Model Checking Revisited 189

Let a∗ = argmaxa∈enA∗(σ(k))
∑

σ∈rN,σ∗ Prη([σ↓k]) a(σ(k + 1))∏
A∈Atoms(P)\{A∗} Pσ,k,A∏N−1
i=k+1

∏
A∈Atoms(P) Pσ,i,A .

Then, since
∑

a∈enA∗ (σ(k)) ηA∗(σ∗, a) = 1, we have

∑
σ∈rN,σ∗ Prη([σ]) ≤

∑
σ∈rN,σ∗ Prη([σ↓k]) a∗(σ(k + 1))∏

A∈Atoms(P)\{A∗} Pσ,i,A∏N−1
i=k+1

∏
A∈Atoms(P) Pσ,i,A

=
∑

σ∈rN,σ∗ Prη′
([σ]) ,

where η′ is the scheduler that coincides with η except for trace σ∗, in which the
scheduler for the atom A∗ chooses a∗.

Since this change does not affect the extensions in rN,¬σ∗ , we have that
Prη′

(rN (U)) ≥ Prη(rN (U)). Thus, we define det(η,σ∗) = η′.
Given a sequence of local traces σ1 · · ·σn (possibly belonging to different

atoms), we extend the definition of det in order to handle finite sequences of
traces as follows: det(η,σ1 · · ·σn) = det(det(η,σn) ,σ1 · · ·σn−1).

Now, we can define a scheduler ηN being deterministic “until the N -th step”
by considering the sequence σ1 · · ·σM comprising all local traces whose length
is less or equal than N and computing det(η,σ1 · · ·σM).

Since the choices after the N -th step do not affect the value of Pr(reachN (U)),
we construct the desired scheduler by taking ηN and modifying it to determin-
istically choose any move after the N -th step. 23

Using the previous lemma, we prove that the maximum probability of reaching
U is the same regardless whether it is quantified over all schedulers or only over
deterministic schedulers.

Lemma 4. supη∈modΣd(P) Prη(reach(U)) = supη∈modΣ(P) Prη(reach(U))

Proof. Let r = supη∈modΣ(P) Prη(reach(U)). We prove that for every ε, there
exists a deterministic scheduler ηε such that r−Prηε(reach(U)) < ε, thus proving
the lemma.

Given ε > 0, there exists a scheduler η such that r − Prη(reach(U)) < ε/2.
Note that we can write reach(U) as

⊎
{n∈N0}

⊎
{σ′|∀i •σ(i))∈U∧len(σ′)=n}

⊎
{s∈U} [σ′ · s] .

Then, since Pr is a measure

Prη(reach(U)) =
∑

{n∈N0}
∑

{σ′|∀i •σ(i))∈U∧len(σ′)=n}
∑

{s∈U} Prη([σ′ · s]) .

So, there exists N such that

Prη(reach(U)) −
∑N

n=0
∑

{σ′|∀i •σ(i))∈U∧len(σ′)=n}
∑

{s∈U} Prη([σ′ · s]) < ε/2 .

190 S. Giro and P.R. D’Argenio

By virtue of Lemma 3, we know that there exists a deterministic sched-
uler ηd such that Prηd(reachN (U)) ≥ Prη(reachN (U)). Then, Prηd(reach(U)) ≥
Prη(reach(U)) − ε/2. This result yields,

r − Prηd(reach(U)) = r − Prη(reach(U)) + Prη(reach(U)) − Prηd(reach(U))
< ε/2 + ε/2 = ε . 23

Though Lemma 4 is the basis for our undecidability result, it has a value of its
own: it states that, for any probabilistic module P and reachability target U ,
it suffices to consider only deterministic schedulers to calculate the maximum
probability of reaching some state in U . Lemma 4 yields to our main result:

Theorem 1 (Approximation of the maximum reachability problem is
undecidable). Given a probabilistic module P , a set U of states and δ > 0, there
is no algorithm that computes r such that |r− supη∈modΣ(P) Prη(reach(U))| < δ.

Proof. Suppose, towards a contradiction, that the problem is decidable. Take an
instance of PPFA as in Def. 13. Then, using Lemmas 4 and 2, we can compute r
such that

δ > |r − supη∈modΣ(P) Prη(reach(U))| = |r − supη∈modΣd(P) Prη(reach(U))|
= |r − supw Pr(accept w)|

thus contradicting Corollary 1. 23

Often reachability properties are only of interest if they are compared to a proba-
bility value (e.g. the maximum probability of an error is smaller than 0.01). This
kind of problems are also undecidable. If this were not the case, a procedure
to calculate an approximation to the maximum reachability probability can be
easily constructed using bisection (see, e.g., [13]). This result is formally stated
in the following corollary.

Corollary 2. Let) denote some operator in {≤, ≥, <, >, =}. There is no algo-
rithm that returns yes if supη Prη(reach(U))) q or returns no, otherwise, for a
given module P and number q.

Moreover, there exists no algorithm that, given a module P , a number q and a
threshold ε returns yes if r) q for some r such that |r − supη Prη(reach(U))| < ε
or returns no, otherwise.

5 Impact and Related Work

Undecidability is frequent in problems involving control and partial information
(e.g. [18]). Since a scheduler can be seen as a controller which enables appropriate
moves, control is closely related to scheduling. This fact gave us a clue about the
result presented in this paper. In [18], a finite state automaton can execute an
action only if a set of infinite-state controllers allows it. The state of a controller
(and, hence, the actions it allows to execute) is updated each time an action

Quantitative Model Checking Revisited 191

observed by the controller happens. Although schedulers can be seen as infinite-
state automata —since the language obtained by taking the (distributions on)
moves prescribed by the scheduler is not restricted— we could not prove our
result using the results in [18] by simply taking the controllers to be schedulers.
Moreover, global schedulers are also infinite state automata, and the problem for
these schedulers is decidable (see [5]). These facts suggest that the tractability
of this problem is likely to vary from a formalism to another, although the
formalisms under consideration may seem to be similar at first sight.

Unfortunately, our result also holds for Switched Probabilistic Input/Output
Automata (Switched PIOA) [3,2] and for the schema of partial information pre-
sented in [6].

In the Switched PIOA formalism, the different components have input and
output local schedulers, and a token is used in order to decide the next compo-
nent to execute. The interleaving between different components is not resolved
by the schedulers, since the way in which the token is passed is specified by the
components. If a component has the token, its local output scheduler chooses
a transition from a generative structure. Otherwise, its local input scheduler
chooses a transition from a reactive structure, thus “reacting” to actions per-
formed by the other components. (For definitions of reactive and generative
structures see e.g. [8,16].)

The probabilistic finite-state automata in [12] can be seen as components
having only reactive structures. In addition, the input scheduler for these com-
ponents is uniquely determined, since each symbol uniquely determines the prob-
ability distribution for the next state. This fact allows to prove undecidability
by composing the PFA (seen as a component of the Switched PIOA) with an
automaton having only one state which chooses the next action to perform using
generative structures (which are Dirac distributions for the sole state of the com-
ponent). This component has the token during all the course of the execution.
So, while this latter component chooses any action, the former component reacts
to this choice as the PFA would do. Hence, these two components can simulate
a probabilistic module as the one described in Def. 13. Note that we are working
with a very strict subset of the Switched PIOA: there are no nondeterministic
choices for the inputs, all generative structures are Dirac distributions and the
token is owned by the same component during all the course of the execution. It
is also worth noting that schedulers as presented in [3,2] are always deterministic
because they can choose any transition in a generative or reactive structure, but
they cannot choose convex combinations of these transitions. Thus, Lemma 4,
and hence Lemma 3, are not needed for Switched PIOA as presented originally,
and undecidability can be proved almost directly using Corollary 3.4 in [12].
Our result indicates that the problem remains undecidable even if we extend
Switched PIOA with nondeterministic schedulers.

Though composition in [6] is not an issue, it presents schedulers for Markov
decision processes which can observe partial portions of the states. The goal
is to obtain better bounds for the probability of temporal properties. Markov
decision process are defined using a set of actions in such a way that each pair

192 S. Giro and P.R. D’Argenio

(s, a) determines the probability distribution for the next state. The schedulers
are restricted as follows: given an equivalence relation ∼ over the set of states
(s ∼ s′ denoting that the scheduler cannot distinguish s and s′), the relation
σ ∼ σ′ over traces is defined to hold iff len(σ) = len(σ′) and for all i, σ(i) ∼ σ′(i).
Then, a partial-information scheduler is required to satisfy η(σ, a) = η(σ′, a)
if σ ∼ σ′. Note that, by taking ∼ such that s ∼ s′ for all s, the scheduler
must decide the next action to perform based solely on the amount of actions
chosen before. Then, using such a relation ∼, a scheduler in [6] is equivalent to
a scheduler for the atom B as Def. 13, and hence the problem of finding the
maximum reachability probability is equivalent to the problem of finding the
maximum reachability probability for a module as in Def. 13.

We remark that [6] defines a model checking algorithm, but it calculates the
supremum corresponding to Markovian partial-information policies, i.e., to the
subset of partial-information policies restricted to choose (distributions on) ac-
tions by reading only the (corresponding portion of the) current state rather
than the full past history. Quantitative model checking on MDP was originally
introduced in [1,5] but for arbitrary schedulers. In particular, [5] proves that the
maximum reachability problem under arbitrary global schedulers has an equiva-
lent solution under deterministic global schedulers (in fact, they are also Markov-
ian in the sense that only depend on the last state and not of the full trace, see
Theorem 3.5 in [5]). Though this result is similar to Lemma 4, the proof of [5]
has no connection to ours. In fact, the construction of the deterministic scheduler
in [5] is also the proof that the problem for the general case is decidable.

6 Conclusion

We have argued that usual quantitative model checkers yields overestimations
of the extremum probabilities in distributed programs and proposed to address
model checking under the restriction of schedulers that are compatible with the
expected behaviour of distributed systems. We showed that it is undecidable
to compute the maximum probability of reaching a state when restricted to
distributed schedulers, hence making the proposal unfeasible in its generality.
Morever, we showed that such value cannot even be aproximated.

On proving undecidability, we needed to prove additional lemmas. In particu-
lar, we believe that the result of Lemma 4 has to be remarked, but mostly, that
its proof technique, including the constructive proof of Lemma 3, is of relevance
and can be reused in searching similar results.

The combination of our undecidability result and the NP-hardness result of [6]
is not encouraging on seeking algorithms for model checking under distributed
or partial-information schedulers. Yet, the observation that arbitrary schedulers
yield overestimations of probability values remains valid. The question then is
whether it is possible to find a proper subset of schedulers (surely including all
distributed schedulers) that yields a tighter approximation of extremum proba-
bilities while keeping tractability of the model checking problem.

Another question is to which extent the calculation (or approximation) of
the minimum probability of reaching a state is also undecidable. Though this

Quantitative Model Checking Revisited 193

is the dual problem to that in Def. 12, we could not obtain a straightforward
dualization of our proof.

Acknowledgement. We would like to thank Peter Niebert who has been an ex-
celent sparring during the development of these ideas, and Holger Hermanns for
his most valuable feedback.

References

1. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) Foundations of Software Technology and The-
oretical Computer Science. LNCS, vol. 1026, pp. 288–299. Springer, Heidelberg
(1995)

2. Cheung, L.: Reconciling Nondeterministic and Probabilistic Choices. PhD thesis,
Radboud Universiteit Nijmegen (2006)

3. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.W.: Switched Probabilistic
PIOA: Parallel composition via distributed scheduling. Theoretical Computer Sci-
ence 365(1-2), 83–108 (2006)

4. Ciesinski, F., Baier, C.: Liquor: A tool for qualitative and quantitative linear time
analysis of reactive systems. In: Proc. of QEST’06, pp. 131–132. IEEE Computer
Society Press, Los Alamitos (2006)

5. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

6. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. In: Proc. of PROBMIV 99. Tech. Rep. CSR-99-8, pp.
19–32. Univ. of Birmingham (1999)

7. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001)

8. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative, and stratified
models of probabilistic processes. Information and Computation 121, 59–80 (1995)

9. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg
(2006)

10. Jeannet, B., D’Argenio, P.R., Larsen, K.G.: Rapture: A tool for verifying Markov
Decision Processes. In: I. Cerna, editor, Tools Day’02, Brno, Czech Republic, Tech-
nical Report. Faculty of Informatics, Masaryk University Brno (2002)

11. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains. Van Nos-
trand Company (1966)

12. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1-2), 5–34 (2003)

13. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes
in FORTRAN: The Art of Scientific Computing, 2nd edn. pp. 343–347. Cambridge
University Press, Cambridge (1992)

14. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley, Chichester (1994)

15. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Massachusetts Institute of Technology (1995)

194 S. Giro and P.R. D’Argenio

16. Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel compo-
sition and comparison. In: Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.,
Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43.
Springer, Heidelberg (2004)

17. Stoelinga, M.: Alea jacta est: Verification of Probabilistic, Real-time and Paramet-
ric Systems. PhD thesis, Katholieke Universiteit Nijmegen (2002)

18. Tripakis, S.: Undecidable problems of decentralized observation and control. In:
Proc. 40th IEEE Conference on Decision and Control, vol. 5, pp. 4104–4109 (2001)

19. Varacca, D., Nielsen, M.: Probabilistic Petri nets and mazurkiewicz equivalence
2003 (Unpublished draft)

