MoDeST — A Modelling and Description
Language for Stochastic Timed Systems

Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren

Formal Methods and Tools Group, Faculty of Computer Science
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. This paper presents a modelling language, called MoDeST,
for describing the behaviour of discrete event systems. The language
combines conventional programming constructs — such as iteration, al-
ternatives, atomic statements, and exception handling — with means
to describe complex systems in a compositional manner. In addition,
MoDeST incorporates means to describe important phenomena such as
non-determinism, probabilistic branching, and hard real-time as well as
soft real-time (i.e., stochastic) aspects. The language is influenced by
popular and user-friendly specification languages such as Promela, and
deals with compositionality in a light-weight process-algebra style. Thus,
MoDeST (i) covers a very broad spectrum of modelling concepts, (i%)
possesses a rigid, process-algebra style semantics, and (iii) yet provides
modern and flexible specification constructs.

1 Introduction

System design is primarily focussed on functional aspects. Non-functional as-
pects such as reliability and performance typically play a role — if at all — in
the final stages of the design trajectory. To overcome this problem, sometimes
identified as the insularity problem of performance engineering [17/14], it has
been widely recognised that quantitative system aspects should be considered
during the entire system design trajectory. Although a complete insight in the
quantitative aspects might not be present at each design stage, even with partial
information (or rough estimates) design alternatives may be rejected early due
to unsatisfactory performance or dependability characteristics. For this purpose,
modelling techniques used by system engineers or those that provide an easy
migration path for users need to be adapted to take quantitative system aspects
into account.

This has resulted in extensions of light-weight formal notations such as SDL
and UML on the one hand, and the development of a whole range of more
rigorous formalisms based on e.g., stochastic process algebras, or appropriate
extensions of labelled transition systems (such as timed and probabilistic au-
tomata [IJ31]). Light-weight notations are typically closer to engineering tech-
niques, but lack a formal semantics; rigorous formalisms do have such formal
semantics, but their learning curve is typically too steep from a practitioner’s
perspective. In this paper, we propose a description language that is intended

L. de Alfaro and S. Gilmore (Eds.): PAPM-PROBMIV 2001, LNCS 2165, pp. 87-{104] 2001.
© Springer-Verlag Berlin Heidelberg 2001



88 P.R. D’Argenio et al.

to have a rigid formal basis (i.e., semantics) and incorporates several ingredients
from light-weight notations such as exception handlin, modularisation, atomic
statements, iteration, and simple data types. The semantics enables formal rea-
soning and provides a solid basis for the development of tool support whereas
the light-weight ingredients are intended to pave the migration path towards
engineers.

Important rationales behind the development of the description language,
called MoDeST (Modeling and Description language for Stochastic Timed sys-
tems), are:

— Orthogonality. The language has been set up in an orthogonal way such that
timing and probabilistic aspects can easily be added to (or omitted from) a
specification if these aspects are of (no) relevance.

— Usability. Syntax and language constructs have been designed to be close to
other commonly used languages. The syntax resembles that of the program-
ming language C and the modelling language Promela [21]. Data modulari-
sation concepts and exception handling mechanisms have been adopted from
modern object-oriented programming languages such as Java [16]. Process
algebraic constructs have been strongly influenced by FSP (Finite State Pro-
cesses [24]) a simple, elegant calculus that is aimed at educational purposes.

— Practical considerations. The design of the language and the development of
accompanying prototype tool-support have taken place hand-in-hand. Con-
siderations about the tool handling of language constructs have been a driv-
ing force behind the language development.

— FEaxpressiveness. We have identified a handful of semantic concepts which are
well-established in the context of computer-aided verification and modelling
formalisms for stochastic discrete event systems:

(1) Action nondeterminism is often used in concurrent system design to leave
parts of the description underspecified, and is an appropriate means to
reflect that the order of events in concurrent executions is out of the
control of a modeller.

(2) Probabilistic branching is a way to include quantitative information
about the likelihood of choice alternatives. This is especially useful to
model randomized distributed algorithms, but also suitable to represent
scheduling strategies, quantify data dependencies etc. on an abstract
level.

(3) Clocks are a means to represent real time and to specify the dynamics
of a model in relation to a certain time or time interval, represented by
a specific value of a clock.

(4) Delay nondeterminism allows one to leave the precise timing of events
unspecified. In many cases, the system dynamics depends on events tak-
ing place in some time interval (e.g., prior to a time-out) where it is left
unspecified when in the interval the event will occur.

! Exception handling in specification languages has received scant attention. Notable
exceptions are Enhanced-LOTOS [I5] and Esterel [3].



MoDeST — A Modelling and Description Language 89

(5) Random variables are often used to give quantitative information about
the likelihood of a certain event to happen after or within a certain time
interval.

While (1) and (2) affect the dynamics of a model via the (discrete) set of next
events, (4) and (5) are means to affect the model dynamics by the (continuous)
elapse of time. Thus, (1) and (4) describe two distinct types of nondeterminism,
while (2) and (5) represent distinct types of probabilistic behaviour. We believe
that each of these concepts is indispensable if striving for an integrated consider-
ation of quantitative system aspects during the entire system design trajectory.
However, we are not aware of any other formalism, model, or tool that is power-
ful enough to cover the complete spectrum spanned by this classification. Some
approaches however come close, among them [29J410[7J26]. We achieve the full
expressiveness by using a model that integrates timed automata [I](using the
deadline style of [6]), stochastic automata [I3|[11], and (simple) probabilistic au-
tomata [31]. These three ingredient models have been selected from a wide range
of possible alternative models. They were chosen because they complement each
other very well and yield precisely the desired expressiveness. Due to their in-
dividual compositional properties, the resulting model is elegant to use in the
context of a compositonal semantics for the language MoDeST.

We claim that the language eases the description of a wide range of systems,
because, in summary, it combines a rigid formal semantics with the following
key features:

— light-weight control structures such as iteration, and exception handling

— simple data types that can be user-defined using modularisation (packages)
— composition and abstraction mechanisms to structure specifications

— atomic statements to control the granularity of transitions

— nondeterministic and probabilistic alternatives

— nondeterministic and probabilistic timing

This paper presents the formal syntax and semantics of MoDeST and dis-
cusses the relationship to existing models for probabilistic systems. The reader
interested in data and data type treatments in MoDeST is referred to [22].

Organisation of the paper. Section Bl introduces the language ingredients of
MoDeST in an incremental way. Section Bl defines the syntax and semantics
formally. Section[4] discusses the range of models covered by MoDeST. Section Bl
briefly addresses some analysis techniques for MoDeST specifications. Finally,
Section [6] concludes the paper. For the sake of clarity, this paper focuses on
behavioural aspects of the semantics and omits considerations on data manipu-
lation. A full version of this paper is available [23].

2 A Gentle Language Primer

This section introduces the core language features of MoDeST by specifying
a real-time cashier. This is done in an incremental manner starting from an
untimed, non-probabilistic description.



90 P.R. D’Argenio et al.

The system is informally described as process Cashier() {
f9110ws. In a sgpermgrket customelts ar- do{:: get_prod ;alt{
rive at the cashing point and queue in or- -+ cash
der to pay their selected products. The . set_price
customers provide their products on a cash }
conveyor belt and the cashier takes the }
products one-by-one from the belt (this is }

modelled by action get_prod). The prod-

uct is either cashed (action cash), or in case there is no price tag, the cashier
calls for assistance to establish the price (action set_price) after which cashing
takes place (action cash). This behaviour is described by the above process,
where ; denotes sequential execution and :: is used as a separator for the dif-
ferent alternatives of the choice construct alt. This construct is a way to model
action nondeterminism. The cashier repeats his (or her) behaviour (indicated by
do{:: ...} which is executed repeatedly, unless a break occurs).

In case more information is available
about the likelihood with which a cus-
tomer delivers a product without price

process Cashier() {
do{:: get_prod palt{

tag, the nondeterministic choice may be 4? ca:h .
replaced by a probabilistic choice. This o iZs}zp ;zce,

yields the process depicted on the right,

where weights (in the form of positive re-

als) are used to determine the likelihood }
with which a certain alternative should be chosen. Here, price information is
available with probability 0.98 and the price tag is absent with probability 0.02.
In the terminology of Section [[] palt is a means to incorporate probabilistic
branching. Each probabilistic choice-construct is required to be action guarded,
i.e., immediately preceded by an action.

.Another uncommon but very ser- process Cashier() {
v1ce§b.le. languafge construct is the do{:: try { get_prod palt{
possibility to raise and handle excep- A9: cash
tions. To illustrate this concept, we
slightly adapt the description of the }
cashier as depicted on the right. In
case a product cannot be cashed due

: 1: throw(no_price) }

catch no_price {

set_price;
to an absent price tag, the cashier cashp}
calls for assistance by raising an ex- }
ception (modelled by action no_price }

of exception type). On handling this
exception the price is determined and the product is cashed.

In a construct like try { P} catche { @} the body P in general models the
normal behaviour, whereas if action e occurs while executing P, an exception is
raised that shall be handled by @, i.e., control is passed from P to Q). Note that
compared to our previous specification, an additional action (of exception type)
has been introduced to signal the occurrence of the exceptional situation.



MoDeST — A Modelling and Description Language 91

So ’far, our (.iescripjcions were time— process Cashier() {
less, i.e., we did not include any tim- do{:: try { get_prod palt {
ing considerations with respect to 49: cash
the activities involved. In the next . 1: throw(no_price) }
step, we will put some simple tim- }
ing constraints on the cashier. Like catch no_price {
in timed automata [I], the elapse y=0;
of time in MoDeST is modelled by when(y > 120)
means of clock variables. Values of set,p;ice;
clock variables increase linearly as cash }
time progresses. For instance, in or- }
der to impose a delay of at least 120 }

time units between catching the ex-

ception no_price and determining the price of the product at hand (set_price),
we equip the previous description with clock variable y, and obtain the process
on the right. Clock y is reset just after catching the exception no_price and the
price can be determined at any time point after a delay of at least 120 time-
units as indicated by the when-clause. In fact, each action needs to be preceded
by a when() constraint, but unless otherwise specified when(true) is a default
constraint (that can be omitted).

When—clz.xuses thus' inc'iicate when a process Cashier() {

certain act}og may (i.e. is gllowed to) do { try { get_prod palt {
happen. Similar to location invari- A9 cash
ants in safety timed automata [I8]

and deadlines in timed automata }
with deadlines [6], we need a separate
mechanism to force certain actions to
happen at some time instant. To that

: 1: throw(no_price) }

catch no_price {
y=0;
urgent(y > 240)

end, we use deadlines. For instance, when(y > 120)
the process on the right specifies that se t,p_rice'
set_price is enabled from 120 time cash } '
units after catching the exception (as }

before), and that it should happen }

before 240 time units after the catch

— as indicated by the urgent-clause. More precisely, if the exception is catched
at time t, say, then set_price will happen at some time instant t+A where A is
nondeterministically chosen from the closed interval [120,240]. Thus, differences
in guards and deadline constraints induce delay nondeterminism.

In general, if an action is guarded by urgent(B), for boolean expression B,
it must be executed as soon as B becomes true. Therefore, a system is allowed
to idle as long as none of its activities becomes urgent. The language user can
influence whether by convention activities are assumed to be urgent (guarded
by urgent(true)), or non-urgent (guarded by urgent(false)), via setting a flag
in the preamble of a MoDeST specification.



92 P.R. D’Argenio et al.

As a next step, we impose a delay process Cashier() {

on the cashing of the cashier, i.e., do {:: try { get_prod palt {

on action cash. Depending on (the :49: Cashing()
price of) the product, environmen- . 1: urgent(true)
tal circumstances (such as the mood

throw(no_price) }
of the cashier, the time of the day), }

and so on, the duration of cashing

! catch no_price {
may vary. We assume that cashing

takes between 10 and 20 time-units. ﬁrge?ﬁ(y > 240)
If no more information is available when(y > 120)
this could be modelled in a simi- set_price;
lar way as we just treated set_price. Cashing() }
However, we now assume that the }

duration of cashing is uniformly dis- }

tributed over the interval [10, 20]. In

this case, the modelling as just above process Cashing() {

does not suffice, as it would choose [zd = U[10,20], = = 0];

a time instant nondeterministically urgent(z > xd)

without taking the likelihoods into when(z > zd)

account. To that end, we equip the cash

specification with a clock variable z,

say, and add a float variable zd, say,

that is used to store a sample value drawn from a probability distribution. Thus,
the occurrences of cash in process Cashier is replaced by invoking a process
Cashing depicted on the right. In the latter, the statement [...] contains a set
of assignments that are executed atomically, i.e., without interference with ex-
ecutions of other processes in the system. In this example, the variable zd is
assigned a (float) value according to a uniform distribution on interval [10, 20],
and clock x is reset. The urgent- and when-clause make sure that cash takes
place as soon as z has reached the value xd.

The overall system could be modelled
by, for instance, the expression on the
right, where N is the parameter (i.e., the
length) of the queue. Variables do not
need to be declared globally, a variable
(or action, or exception) can equally well

exception no_price;

clock z, y;

float zd;

patient get_prod, cash, set_price;

ar
be declared local to a process. Processes P { Arrivals() ;
are put in parallel via the par{::...} con- Queue(N)7'
struct. These processes execute their ac- A ’
e :: Cashier()
tivities independently from each other, }

except that common (non-local) actions

need to be executed synchronously, & la CSP [20]. One of the keywords ap-
pearing in the preamble needs further explanation. We distinguish patient and
impatient actions. If a patient action is common to multiple processes, then the
synchronized action becomes urgent as soon as all partners require urgency. In



MoDeST — A Modelling and Description Language 93

contrast, a process that intends to synchronise on an impatient action is not
willing to wait for the partner. Thus a synchronized impatient action is urgent
as soon as at least one synchronization partner requires urgency.

3 Formal Definition of MoDeST

This section formally defines the language MoDeST, the underlying operational
model, and the operational semantics of MoDeST. The semantics maps each
MoDeST specification on some stochastic timed automata (STA, for short). STA
combine the power of timed automata [1] using the deadline style of [6], stochastic
automata [I3]11], and (simple) probabilistic automata [31]. Before discussing
syntax and semantics of MoDeST we introduce STA together with other relevant
concepts.

3.1 Stochastic Timed Automata

A probability space is a tuple (2, F,P) where 2 is the sample space, F is a o-
algebra containing subsets of {2, and P is a probability measure on the measurable
space (£2, F). If P is a probability space, we write £2p, Fp and Pp for its sample
space, o-algebra, and probability measure, respectively@. Let Prob(H) denote the
set of probability spaces (2, F,P) such that 2 C H.

Let Var be a set of typed wariables with a distinguished subset Ck C Var of
clock variables (variables of type clock ). Let RVar be a (finite) set of random
variables such that RVarNVar = (). Let Exp be a set of expressions with variables
in Var URVar. Let BExp C Exp be the set of boolean expressions, ranged over by
d,d, g,q.... A boolean expression is required not to contain random variables.
A : Var — Exp, is called an assignment. Let Assign denote the set of assignments.
Let Act be a set of action names. We use a to range over elements of Act.

Definition 1. A stochastic timed automaton (STA) is a triple (S, Act,—),
where S is a set of locations and —- C S xAct x BExp x BExp x Prob(Assign xS).
For (s,a,g,d,P) € —», we write s 294, P and require that P is a discrete

probability space. We call g the guard and d the deadline. Intuitively, the system

is allowed to execute an edge s —20:9y P whenever it is at location s and the

guard g holds under the current values of the variables. If in addition the deadline
d holds, then the system is obliged to execute the edge before time progresses.

Due to this fact, the system is allowed to wait in location s as long as no deadline
in one of its outgoing edges becomes true. Once the edge s —2:0:d P iy executed,
the system moves to location s’ assigning values according to A with probability

Pp((s', A)).

2 We assume familiarity with the basics of probability and measure theory (see
e.g. [32)).



94 P.R. D’Argenio et al.

Depicted on the right is an example B

STA corresponding to the final Cashier / get_prod
specification of Section[2. Locations are ! 0.98 .-~ 0.02
represented by circles. A probabilistic (&> 2d) 7 T a

edge is represented by a solid line from  y(z > zq) T:(true) Y TU (true)
which doted arrows fan out. The solid cash tau no_price
line is labelled by the guard, deadline, ed = U[0,20] |

and synchronisation label. Each dotted yz:=0 !

arrow represents a probabilistic alter- u(true)
native, and are labelled with a prob- u(y > 240) tau
ability value and a set of assignments. W(gefplrigg ;y =0

Their target is the next location. Dead-
lines are prefixed by a ‘U’ (urgent) and omitted if they are false, and guards by a
‘W’ (when) and omitted whenever they are true. Trivial probabilities and empty
assignments are also omitted.

STA provide a symbolic framework to represent stochastic timed behaviour,
but this representation is too abstract to represent the concrete evolution as
describe above, which is needed for different kinds of analysis, such as prob-
abilistic model checking, or discrete event simulation. Therefore, STA have an
interpretation in terms of timed continuous probabilistic transition systems. This
interpretation is given in [23].

3.2 Syntax

In the following we discuss the language constructs of MoDeST. We assume that
the set of actions Act consists disjointly of:

— a set PAct of patient actions,

— a set |Act of impatient actions,

— a set Excep of exception names,

— an action L indicating an unhandled error,

— an action break indicating the breaking of a loop, and

— an action tau indicating an unobservable activity called silent step.

The set of processes of the language MoDeST is given by the following grammar,
P ::= stop | error | ProcName(eq, ..., ex)
| when(b) P | urgent(b) P | alt{::P; ... :Py}
| act | act palt {:wi:asgny; Py ... :wg:asgny; P}
| throw(ezcp) | try{P} catch excp, {P1} ... catch excp, {P:}
break | do{::P ... P}
P Py | par{:P; ... :P}
hide{acty,...,acty} P | extend{acty,...,acty} P
relabel {actq, ..., acty} by {act], ..., act},} P



MoDeST — A Modelling and Description Language 95

where, for 1 < i < k, w; is a positive integer representing a weight, act, act} €
PAct U lAct U {tau}, act; € PAct UlAct, excp, excp; € Excep, b € BExp, e; € Exp
not containing random variables, and asgn; is a list of assignments of the form
[x1 =e1, xa =€, ..., T =e€,]. A MoDeST process is defined by

process ProcName(ty x1,...,t; x) {dcl P}

where {x1,..., 2} € Var, {t1,...,tx} are valid types, dcl is a sequence of dec-
larations possibly including process definitions, ProcName is a process name
and P is as before. We write process ProcName(z1,...,x) {P} instead in the
remainder of this paper, for convenience.

Each set [x1 = ey, ..., 2, = €,] induces a unique assignment A € Assign de-
fined by A(x;) = ¢;, for 1 < i < n, and A(y) =y if y ¢ {z1,...,2,}. There-
fore, we use [z1 = e, ..., T, = €,] € Assign to refer to its induced assignment
A € Assign.

MoDeST provides some further useful operations which are shorthand nota-
tions for some common constructions. They are described in Appendix [Al

3.3 Semantics

The operational semantics of MoDeST is defined in terms of the stochastic
timed automaton (S, Act,—) where the set of locations S is defined by the
set of MoDeST processes extended with a special termination mark /. The
relation —- is defined in the remainder of this section. In the following we
use Trv(r) to denote the trivial probability space with sample space {r}. We
also resort to measurable functions. Recall that M : (2 — (25 is measur-
able if M~1(C) € F; for all C € F, and that it induces a probability space
M (21, F1,P1) = (§22,F2,P1 o M~1). In our case, all measurable functions are
defined to be surjective. Under this condition 2 = M({2;).

Primitive operators. stop does not perform any activity and as such it does not
produce any transition. act performs action act with no restriction and then
terminates. break, used to break a do loop, can perform action break with no
restriction and then terminates. error is a process that indicates an unhandled
error by persistent executions of action . The last of the basic operations,
throw(excp), raises an exception by executing action excp € Excep. If it is not
handled, the system ends up in an unhandled error. In all these cases, urgency
of the execution depends on a global boolean variable urge which can be set to
true or false in the preamble section of the specification. If set to true, the
specified system responds to mazimal progress (default is false). We get:

act act,true,urge T‘I‘V(\/) error 1 ,true,urge ’I‘I‘V(error)

break —2eak.true.urge py.y( /) throw (ezcp) —ZLUeUE vy (error)



96 P.R. D’Argenio et al.

Probabilistic prefix. act palt {:wy:asgnq; Py ... :wg:asgny; P} performs action
act with no restriction, but as urgently as indicated by urge. Simultaneously, it
randomly selects an alternative ¢ € {1, ..., k} according to the weights wy, . . ., wg,

performs an assignment according to asgn,, and continues executing P;.

1t
act palt {zwi:asgn,; Py ... wy:asgn,,; P} ———22p P

where P is a discrete probability space with 2p = {(asgn;, P;) | 1 <i < k} and
w; - |1 <j<kAasgn; =asgn;, P, =P;
P ((asgn;. P)) & #jl1<5< i gn; gn;, P; = Pj}
D1 Wi

Conditions. when(b) P restricts the next activity of P to be performed whenever
b holds. urgent(b) P enforces P to be urgent whenever b holds:

p %94y p p—%9d, p
when(b) P —%Aedy p urgent(b) P —=2¥d4, p
Choice. alt{::Py ... ::P;} executes precisely one P;, selected in a nondetermin-

istic fashion:
P-4l p, (1<i<k)

alt{::P, ... ::Py} —ag.d, P
Loop. do{::P; ... ::P} repeatedly chooses a nondeterministic alternative. The

execution finishes when one of the processes executes a break. We define the
semantics of do in terms of alt and an auxiliary operator auxdo:

do{::P; ... =Py} e auxdo{alt{::P; ... =Py} }H{alt{::P, ... 1Py }}

The semantics of auxdo is given by:

P99 p (g + break) p breakgd, p
auxdo{ PHQ} —=L% Mgo(P) auxdo{P}{Q} 224y p

where Mgyo((4, P')) def (A,auxdo{P'}{Q}), if P'#./, and otherwise,
def
Mago((4,v/)) = (A auxdo{QHQ}).
Exception handling. The process try{P} catch exzcp, {P1} ... catch excp, {Ps}
executes P and terminates if P terminates without raising any exception be-
forehand. If instead P raises an exception excp;, it is handled by executing the
respective process P;:
p 294y p (a & {excpy,. .., excp,})
try{ P} catch exzcp, {P,} ... catch ezcp;, {Pp} —22% Myy(P)
p-usdy po (1<i<k)
try{ P} catch excp, {P,} ... catch excp, {P;} 2229 Trv(P)




MoDeST — A Modelling and Description Language 97

Table 1. Alphabet of a MoDeST term

a(stop) = a(error) = a(break) = a(throw(ezcp)) = 0

act) = {act} — {tau}

2

(
(ac
a(act palt {wi:asgny; Pr ... wiiasgng; Pe}) = alact) U Ule a(F)

a(when(b) P) = a(urgent(b) P) = a(P)

(@t{=:Py ... =P}) = a(do{:P1 ... =Pi}) = a(par{::P; ... =P}) = U, a(P)
(

(tr

(

(

Q

Q

Pi; Po) = a(P1) Ua(P)
try{P} catch excp, {P1} ... catch excp, {Pr}) = a(P)U Ule a(F;)
hide{act:, ..., acty} P) = a(P) — {act1, ..., acty}

«
«

a(relabel {acty, ..., acty} by {actl, ..., act,} P) =
a(P)lacti/actl, ..., acty/act}] — {tau}

a(extend{acty, ..., acty} P) = a(P)U{act1,...,acty}

a(ProcName(eq, ..., ex)) = a(P) provided process ProcName(x1,...,z;) {P}

where Myy((4, P")) def (A, try{P’'} catch excp, {P1} ... catch excp, {Px}), if

P'#/, and Miy((4,V)) = (4, ).

Sequential composition. P;; Py executes P; until it finishes. Then it continues
with the execution of Py:

p 224y p
Pl;PQ agd M(P)

def

where M., ((4,P")) = (A,P'; Py),if P’ #/, and M, ({4, \/>) <A Py).

Parallel composition. par{::P; ... ::Py} executes processes Pi,..., P, concur-
rently, synchronising them on the intersected alphabet, therefore allowing multi-
way synchronisation. The alphabet of a process P is the set a(P) C PActUIAct of
all actions P recognises. It is formally defined in Table[ll To define the semantics
of MoDeST parallel composition, we resort to the auxiliary operator ||, with
B C PAct U lAct, that behaves like CSP or LOTOS parallel composition [20]5].
Thus, par is defined by

par{::P; ... ::Py} def (-((Pullg, P2)llg, P3)--) g, _, P

with B; = (U]_, a(P;)) N a(Pj41). The behaviour of || is formally defined by
the followmg rules (we omit the symmetric rule of interleaving):

P 2% P (a ¢ B) p oy p p wed,p (gcB)

P1||BP2¢"MparP2(’P) P1||BP M*Mpar('ljlxpz)




98 P.R. D’Argenio et al.

where d; Cdy = dy Ads if a € PAct (that is, if the synchronising action is patient)
and d1<Cdy = di V ds otherwise (impatient). The operator x denotes the usual
product on probabilistic spaces, and Mparp, ((4, P')) ef (A, P ||g Po),if P #/

or Py # /, otherwise Mpar/((4,v)) % (4, /). Furthermore,

if A; U A5 is not a function then
(@, throw inconsistency)

Mpar((A1, P1), (As, P3)) e else
(AU As, Pl PY) 3 P or P
(A1 U Az, /) if Pl=P =/

Some remarks are in order. A parallel composition terminates whenever all its
components terminate. Moreover, notice that the difference between synchroni-
sation of patient and impatience actions is only given by the way the deadlines
are related. Since a process that wants to synchronise on a patient action always
waits for its partner to be ready, then its deadline needs to be relaxed to the
requirements of the partner. As a consequence, a deadline in a patient synchro-
nisation is met whenever all the components meet their respective deadlines.
Instead, a process that intends to synchronise on an impatient action is not
willing to wait for the partner. Therefore, a deadline in an impatient synchroni-
sation should be met as soon as one of the one of the synchronising components
meets its deadlines. Finally, remark that during synchronisation an inconsistency
of assignments may arise due to different write accesses to the same variable,
ie., if Aj(z) # As(x) for some variable z. We treat this situation by raising a
predefined exception.

Relabelling and hiding. relabel {acty,..., acty} by {act],..., act}.} P behaves
like P except that every action act; is renamed by the corresponding act}:

p g4, p [ =lact1/act}, ..., acty/act}]

relabel {acty, ..., acty} by {act], ..., act}} P fa)gd, Mieiabel(P)

where Mygiapel ({4, P’)) def (A, relabel {actq,. .., acty} by {act!,..., act)} P’),if

. def
P’ £/, otherwise Myeiabel({(4,1/)) = (4,/).
Hiding is a particular form of relabeling in which actions are renamed by the
silent action tau. Therefore we define:

hide{acty, ..., acty} P L relabel {acty, ..., acty} by {tau, ... ,tau} P
———

k times

Alphabet extension. extend is only used to extend the alphabet that a process
recognises (see Table [I). Otherwise, it does not affect the behaviour:

P augadl P

extend{acty, ..., act} P —22% Meyona(P)




MoDeST — A Modelling and Description Language 99

where Mextend({(A, P')) def (A, extend{acty, ..., acty} P'), and

Mextend((4,v)) < (4,1)).

Process instantiation. Provided process ProcName(zy,...,zx) {P} is part of
the MoDeST specification under consideration, ProcName(ey,...,e;) behaves
like P where variables x1, ...,z are substituted by their respective instantiations
€1,...,€L.

Plri/er, ..., ok /ex] —wody, p

d
ProcName(ey, . .., ep) —L“ P

provided process ProcName(x1,...,z;){P}

In summary, the relation —~ is the least relation satisfying the above rules.
The reader is invited to check that the STA depicted in Section B is derived
from the final Cashier specification of Section [2 using these semantic rules (see
Appendix [Al for the shorthand notations used).

4 Derivable Models

MoDeST is expressive enough to cover a wide range of timed, probabilistic, non-
deterministic, and stochastic models. These submodels play a crucial role in the
context of analysing MoDeST specifications. Table [2 lists a range of prominent
models and makes precise which semantic concepts (cf. Section [I) each of them
shares with STA.

LTS: Labelled transition systems are the basic models of concurrency, they are
usually analysed with techniques such as model checking or equivalence check-
ing. They arise from MoDeST by disallowing the use of all time and stochastic
concepts.

PTS: Probabilistic transition systems are labelled transition systems where some
state changes are governed by discrete probability distributions while others are
nondeterministic. They can be analysed with techniques from Markov decision
theory, model checking, and equivalence checking [3T/9]. MoDeST subsumes (sim-
ple) PTS via the palt construct which is action guarded by default.

Table 2. Submodels of STA
[LTSPTS TA PTA  MC  GSMP  IMC  SA|STA

probabilistic branching| NO YES NO YES YES YES YES YES| YES
clocks NO NO YES YES RESTRICTED YES RESTRICTED YES|YES
random variables NO NO NO NO EXP.DIST. YES EXP. DIST. YES|YES
delay nondeterminism | NO NO YES YES NO NO NO NO | YES

action nondeterminism|YES YES YES YES NO NO YES YES| YES



100 P.R. D’Argenio et al.

TA: Timed automata are transition systems incorporating an explicit notion
of real time, represented by continuously moving clocks. Reachability analysis
and model checking are the usual techniques employed for TA [1/1§]. Timed
automata (with deadlines) arise from MoDeST by abstaining from the use of
random variables and palt.

PTA: Probabilistic timed automata are integrating TA and PTS, thus they
arise from STA if random variables are unused. Reachability analysis and model
checking have been proposed for PTA [25].

MC': Continuous time Markov chains are a standard model in contemporary per-
formance evaluation. An MC is stochastic process where each delay is governed
by some exponential distributed random variable. Analysis techniques for MCs
range from the numerical computation of transient and steady state probabili-
ties to approximate model checking [332]. MoDeST allows one to model MC by
using clocks and exponentially distributed random variables, but in a restricted
form (guards are right-continuous and clocks can be uniquely mapped on the
random variables they use). Action and delay nondeterminism is not allowed.
The model is not closed w.r.t. the operators of the language, e.g. the parallel
composition of two MCs is not necessarily a MC (but an IMC).

IMC: Interactive Markov chains are MCs where action nondeterminism can oc-
cur. Therefore the model is closed w.r.t. the operators of MoDeST. An IMC can
be analysed with algorithms developed for continuous time Markov decision pro-
cesses [30], or sometimes be reduced to a MC by factoring the model with respect
to a weak equivalence [19]. As with MCs these models can be reconstructed from
a given STA | if the latter obeys certain restrictions. MoDeST provides shorthand
notations making it possible to ensure these restrictions by default: A specifi-
cation where stochastic aspects only make use of these shorthands possesses a
direct semantics in terms of IMC (without reconstructing the latter from the
STA semantics).

GSMP: Generalized semi-Markov processes are a general purpose performance
evaluation model. Theses stochastic processes are usually analysed using dis-
crete event simulation, but in specific cases a numerical analysis is also feasible.
GSMPs arise from MoDeST specifications if action and delay nondeterminism
does not occur. The model is not closed w.r.t. the operators of the language,
e.g. the parallel composition of two GSMPs is not necessarily an GSMP (but a
SA).

SA: Stochastic automata are basically GSMPs with action nondeterminism
(hence they are closed under composition), but can also be seen as TA where
delay nondeterminism is replaced by random variables governing the delays [13]
11]. As with IMC, specific shorthands can be used to ensure the restrictions
required to obtain a SA. For instance if X is a random variable then wait(X)
is an abbreviation for [z = X ;¢ = 0] urgent(c > z) when(c > z) tau where ¢



MoDeST — A Modelling and Description Language 101

(respectively x) is a clock variable (float variable) private to X. Again, these
shorthands are used to map the MoDeST specification directly on the SA which
otherwise is retrievable from the STA semantics.

It is important to remark that the presence of each listed semantic concept —
apart from action nondeterminism — can be detected syntactically, while parsing
a specification. This is trivial for probabilistic branching (palt), and obvious for
clocks, because they have to be declared before use in MoDeST. Use of random
variables is easily detected while parsing because (exponential or general) con-
tinuous probability distributions are provided via a predefined class (i.e., type).
Delay nondeterminism is absent in a specification if for each action the guard and
deadline agree. So, Table [ also gives sufficient syntactic criteria for identifying
submodels while parsing a MoDeST specification.

Action nondeterminism is a principal feature for compositional formalisms, yet
it induces that MCs and GSMPs are not closed under composition in general.
Action nondeterminism can in principle be excluded syntactically by disallowing
alt and par, but the resulting language is too meager to be of much use. More
liberal syntactic conditions for absence of action nondeterminism can be adopted
from [28].

5 Model Analysis

The identification of well-studied submodels is of crucial practical relevance,
because the enormous expressiveness of MoDeST comes with the drawback that
the underlying general model is not well investigated: So far analysis methods for
the general STA model have not been devised, and their development is ongoing
work. The general idea behind this work is strongly based on the identification
of submodels of STA for which analysis methods have been published. Based on
this knowledge, four different strands can be pursued:

— Isolate syntactic subclasses of MoDeST that map on well-investigated sub-
models. As long as the user of MoDeST adheres to such a subset, the proper
analysis engine can be determined mechanically.

— Define abstractions from STA to less specific models. One such abstraction
[12] is to mask the distributions of random clocks i.e., to consider random
clocks as delay nondeterministic clocks. In this way, any STA can be turned
into a TA by abstracting the stochastic behaviour. Real-time model checking
on this TA is safe w.r.t. to the original STA model.

— Define concretisations from more general models to more specific models.
This usually means to add additional explicit modelling assumptions, such
as to assume a particular scheduler to resolve action nondeterminism, or to
assume that all random clocks follow an exponential or phase-type distribu-
tion. Note that the quantitative error introduced by such an assumption can
be unbounded in certain circumstances.

— Extend or combine analysis methods from submodels of STA to full STA. In
particular we are planning to integrate real-time model checking of TA with
numerical recipes for GSMPs.



102 P.R. D’Argenio et al.

6 Conclusion

In this paper we have introduced a modelling and description language for
stochastic timed systems. We have formally defined syntax and semantics of
MoDeST, and have put the language in the context of other well-studied mod-
els. The focus of this paper has been the behavioural part of MoDeST. The data
part is described in [22]. In a nutshell, we allow simple and structured data
types, and modularization (packages). Object-oriented enhancements (classes,
sub-typing, polymorphism) are under development.

We are currently implementing a tool suite to support modeling and analysis
with MoDeST. The language parser is being finalised, and we are working on
the state space generator now. The main strategy we pursue in this respect is to
bridge to state-of-the-art verification and analysis tools on the level of the STA
model. More concretely, we are busy with linking to UPPAAL [27] for real-time
model checking and to MOBIUS [§] for discrete event simulation and numerical
analysis.

Acknowledgement The authors are grateful to Ed Brinksma for inspiring dis-
cussions. This work is supported by grant TES-4999 of the Dutch Technology
Foundation (STW) and grant 612.069.001 of the Netherlands Organisation of
Scientific Research (NWO).

A Further MoDeST Expressions

MoDeST provides operations which are shorthands for some common construc-
tions. For instance, both alt and do allow an else alternative (as in Promela).
else is a shorthand that can be calculated at compile time, e.g.,
alt{::when(by) P; ... =when(b) P ::else Q}
' alt{:when(b;) Py ... =when(b) P =when(=\/"_, b)) Q}.
In a probabilistic alternative, either assignments or processes (but not both)
can be omitted, e.g., act palt {:1: [y = 3] :2: PN(4) } should be interpreted as
act palt {:1: [y = 3] v/ :2: [] PN(4) }. Notice however that, strictly speaking,

the last process is not a legal MoDeST expression since +/ is not in the language.
The following shorthands for assignment are also allowed in MoDeST:

[x1=e€1, ..., Tk =e€k] def urgent(true) taupalt {: 1: [x1 =e1, ..., 2k = €x]V/}
def
xr=e = [x=¢]

Furthermore, invariants like in safety timed automata [1§] can be defined by
invariant(b) P def urgent(—b)when(b) P.

MoDeST also provides other useful forms of relabelling apart from relabel and
hide, and standard programming constructs are provided, such as:

while(b){ P} ef do{::when(b) P :else break}.



MoDeST — A Modelling and Description Language 103

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

R. Alur and D. Dill. A theory of timed automata. Th. Comp. Sc., 126:183-235,
1994.

C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In: J.C.M. Baeten and S. Mauw, eds, Concurrency
Theory, LNCS 1664, pp. 146—161. Springer-Verlag, 1999.

G. Berry. Preemption and concurrency. In: R.K. Shyamasundar, ed, Found. of
Software Techn. and Th. Comp. Sc., LNCS 761, pp. 72-93. Springer-Verlag, 1993.
L. Blair, T. Jones, and G. Blair. Stochastically enhanced timed automata. In: S.F.
Smith and C.L. Talcott, eds, Proc. 4th IFIP Conf. on Formal Methods for Open
Object-based Distributed Systems (FMOODS’00), pp. 327-347. Kluwer, 2000.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Netw. and ISDN Sys., 14:25-59, 1987.

S. Bornot and J. Sifakis. An algebraic framework for urgency. Inf. and Comp.,
163:172-202, 2001.

M. Bravetti and Gorrieri. The theory of interactive generalized semi-Markov pro-
cesses. Th. Comp. Sc., 258, 2001 (to appear).

D. Daly, D.D. Deavours, J.M. Doyle, P.G. Webster, and W.H. Sanders. Mobius: An
extensible tool for performance and dependability modeling. In B.R. Haverkort,
H.C. Bohnenkamp, and C.U. Smith, eds, Computer Performance FEvaluation, LNCS
1786, pp. 332-336. Springer-Verlag, 2000.

L. de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, 1997.

L. de Alfaro, T.A. Henzinger and R. Majudmar. Stochastic modules. Unpublished
manuscript, 1999.

P.R. D’Argenio. Algebras and Automata for Timed and Stochastic Systems. PhD
thesis, Faculty of Computer Science, University of Twente, 1999.

P.R. D’Argenio. A compositional translation of stochastic automata into timed
automata. Technical Report CTIT 00-08, Faculty of Computer Science, University
of Twente, 2000.

P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the
specification of stochastic systems (extended abstract). In: D. Gries and W.-P.
de Roever, eds, Proc. IFIP Working Conf. on Programming Concepts and Methods,
pp- 126-147. Chapman & Hall, 1998.

D. Ferrari. Considerations on the insularity of performance evaluation. IEEE
Trans. on Soft. Eng., 12(6): 678683, 1986.

H. Garavel and M. Sighireanu. On the introduction of exceptions in E-LOTOS.
In: R. Gotzhein and J. Bredereke, eds, Formal Description Techniques IX, pp.
469-484. Kluwer, 1996.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

C. Harvey. Performance engineering as an integral part of system design. Br.
Telecom Technol. J., 4(3): 142-147, 1986.

T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Inf. and Comp., 111:193-244, 1994.

H. Hermanns. Interactive Markov Chains. PhD thesis, University of Erlangen-
Niirnberg, 1998.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.



104

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

P.R. D’Argenio et al.

R. Klaren, P.R. D’Argenio, J.-P. Katoen, and H. Hermanns. Modest language
manual. CTIT Tech. Rep. University of Twente, 2001. To appear.

P.R. D’Argenio, H. Hermanns, J.-P. Katoen, and R. Klaren. MoDeST — a mod-
elling and description language for stochastic timed systems. CTIT Tech. Rep.,
University of Twente, 2001.

J. Kramer and J. McGee. Concurrency: State Models and Java Programs. John
Wiley and Sons, 1999.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with probability distributions. In: J.-P. Katoen, ed, Formal
Methods for Real-Time and Probabilistic Systems, LNCS 1601, pp. 75-95. Springer-
Verlag, 1999.

M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Verifying quantitative
properties of continuous probabilistic timed automata. In C. Palamadessi, ed,
Concurrency Theory, LNCS, Springer-Verlag, 2000.

K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Int. J. of Software
Tools for Technology Transfer, 1(1/2):134-152, 1997.

V. Mertsiotakis. Approzimate Analysis Methods for Stochastic Process Algebras.
PhD thesis, University of Erlangen-Niirnberg, 1998.

J.F. Meyer, A. Movaghar, and W.H. Sanders. Stochastic activity networks: Struc-
ture, behavior and application. In: Proc. Int. Workshop on Timed Petri Nets, pp.
106-115, IEEE CS Press, 1985.

M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
grammang. John Wiley & Sons, 1994.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Dept. of Electrical Eng. and Computer Science, MIT, 1995.
A.N. Shiryaev. Probability, volume 95 of Graduate Texts in Mathematics. Springer-
Verlag, 1996.

W. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

W. Yi. Real-time behaviour of asynchronous agents. In: J.C.M. Baeten and J.-W.
Klop, eds, CONCUR 90, LNCS 458, pp. 502-520. Springer-Verlag, 1990.



	Introduction
	A Gentle Language Primer
	Formal Definition of ensuremath {@mathsf {MoDeST}}
	Stochastic Timed Automata
	Syntax
	Semantics

	Derivable Models
	Model Analysis
	Conclusion
	Further ensuremath {@mathsf {MoDeST}} Expressions

