International Journal on Software Tools for Technology Transfer (2020) 22:759-780

https://doi.org/10.1007/s10009-020-00563-2

GENERAL

Special Issue TACAS 2018

®

Check for
updates

An efficient statistical model checker for nondeterminism

and rare events
Carlos E. Budde'® - Pedro R. D'Argenio®3*

Published online: 28 May 2020
© The Author(s) 2020

Abstract

- Arnd Hartmanns

1® - Sean Sedwards®

Statistical model checking avoids the state space explosion problem in verification and naturally supports complex non-
Markovian formalisms. Yet as a simulation-based approach, its runtime becomes excessive in the presence of rare events,
and it cannot soundly analyse nondeterministic models. In this article, we present modes: a statistical model checker that
combines fully automated importance splitting to estimate the probabilities of rare events with smart lightweight scheduler
sampling to approximate optimal schedulers in nondeterministic models. As part of the MODEST TOOLSET, it supports a
variety of input formalisms natively and via the JANI exchange format. A modular software architecture allows its various
features to be flexibly combined. We highlight its capabilities using experiments across multi-core and distributed setups on
three case studies and report on an extensive performance comparison with three current statistical model checkers.

1 Introduction

Statistical model checking (SMC [1,49,81]) is a formal ver-
ification technique for stochastic systems. Using a formal
stochastic model, specified as e.g. a continuous-time Markov
chain (CTMC) or a stochastic variant of Petri nets, SMC can

The authors are listed in alphabetical order. This work was supported
by ANPCyT Project PICT-2017-3894 (RAFTSys), by ERC Grant
695614 (POWVER), by the JST ERATO HASUO Metamathematics for
Systems Design Project (JPMJER1603), by the NWO SEQUOIA
Project, by NWO VENI Grant 639.021.754, and by SeCyT-UNC
Project 33620180100354CB (ARES).

B< Arnd Hartmanns
a.hartmanns @utwente.nl

Carlos E. Budde
c.e.budde @utwente.nl

Pedro R. D’ Argenio
dargenio@famaf.unc.edu.ar

Sean Sedwards

sean.sedwards @uwaterloo.ca

University of Twente, Enschede, The Netherlands
Universidad Nacional de Cérdoba, Cérdoba, Argentina
3 CONICET, Cérdoba, Argentina

Saarland University, Saarbriicken, Germany

University of Waterloo, Waterloo, Canada

answer questions such as “what is the probability of system
failure between two inspections” or “what is the expected
time to complete a given workload”. SMC is gaining popu-
larity for complex applications where traditional exhaustive
probabilistic model checking is limited by the state space
explosion problem and by the inability to efficiently handle
non-Markovian formalisms or complex continuous dynam-
ics. At its core, SMC is the integration of classical Monte
Carlo simulation with formal models. By only sampling con-
crete traces of the model’s behaviour, its memory usage is
effectively constant in the size of the state space, and it is
applicable to any behaviour that can effectively be simulated.
However, its use in formal verification faces two key chal-
lenges: rare events and nondeterminism.

The result of an SMC analysis is an estimate ¢ of some
actual quantity of interest ¢ together with a statement on the
potential statistical error. A typical guarantee is that, with
probability 8, any g will be within + € of ¢. To strengthen
such a guarantee, i.e. increase § or decrease €, more samples
(that is, simulation runs) are needed. Compared to exhaus-
tive model checking, SMC thus trades memory usage for
accuracy or runtime. A particular challenge thus lies in rare
events, i.e. behaviours of very low probability. Meaningful
estimates need a small relative error: for a probability on the
order of 107!, for example, e should reasonably be on the
order of 10720, In a standard Monte Carlo approach, this
would require infeasibly many simulation runs.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00563-2&domain=pdf
http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-8528-9215
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0002-2903-0823

760

C.E.Budde

SMC naturally works for formalisms with non-Markovian
behaviour and complex continuous dynamics for which the
exact model checking problem is intractable or undecidable,
such as generalised semi-Markov processes (GSMP) and
stochastic hybrid Petri nets with many generally distributed
transitions [67]. As a simulation-based approach, however,
SMC is incompatible with nondeterminism. Yet (continu-
ous and discrete) nondeterministic choices are desirable in
formal modelling for concurrency, abstraction, and to repre-
sent either controllable inputs or an absence of knowledge.
They occur in many formalisms such as Markov decision
processes (MDP [68]) or probabilistic timed automata (PTA
[58]). In the presence of nondeterminism, quantities of inter-
est are defined with respect to optimal schedulers (also called
policies, adversaries, or strategies) that resolve all nonde-
terministic choices: the verification result is the maximum
or minimum probability or expected value ranging over all
schedulers. Many SMC tools that appear to support nondeter-
ministic models as input, e.g. PRISM [57] and UPPAAL SMC
[26], use a single implicit scheduler by resolving all choices
randomly. Results are thus only guaranteed to lie somewhere
between minimum and maximum. Such implicit resolutions
are a known problem affecting the trustworthiness of simu-
lation studies [56].

In this article, we present modes, a statistical model
checker that addresses both of the above challenges: It imple-
ments importance splitting [59] to efficiently estimate the
probabilities of rare events, and lightweight scheduler sam-
pling [60] to statistically approximate optimal schedulers.
Both methods can be combined to perform rare event simu-
lation for nondeterministic models.

Rare event simulation A key challenge in rare event simu-
lation (RES [72]) is to achieve a high degree of automation
for a general class of models [8,51,74,82]. For this purpose,
following the reasoning in [10], we focus on importance
splitting RES algorithms. Current approaches to automati-
cally derive the importance function for importance splitting,
which is critical for the method’s performance, are mostly
limited to restricted classes of models and properties, e.g.
[36,62,75]. modes combines several importance splitting
techniques with the compositional importance function con-
struction of Budde et al. [12] and two different methods to
derive levels and splitting factors [9]. These method combi-
nations apply to arbitrary stochastic models with a partly
discrete state space. We have shown them to work well
across different Markovian and non-Markovian automata-
and dataflow-based formalisms [9]. We present details on
modes’ support for RES in Sect. 3. Alongside PLASMA LAB
[61], which implements automatic importance sampling [53]
and semi-automatic importance splitting [52,54] for Markov
chains (with APIs allowing for extensions to other models),
modes is one of the most automated tools for RES on formal
models today. In particular, we are not aware of any other

@ Springer

tool that provides fully automated RES on general stochastic
models.

Nondeterminism Sound SMC for nondeterministic models is
a difficult problem. For MDP, Brazdil et al. [7] proposed a
sound machine learning technique to incrementally improve
a partial scheduler. UPPAAL STRATEGO [25] explicitly syn-
thesises a “good” scheduler before using it for a standard
SMC analysis. Both approaches suffer from worst-case mem-
ory usage linear in the number of states as all scheduler
decisions must be stored explicitly. Classic memory-efficient
sampling approaches like the one of Kearns et al. [55] address
discounted models only. modes implements the lightweight
scheduler sampling (LSS) approach introduced by Legay et
al. [60]. Itis currently the only technique that applies to reach-
ability probabilities and undiscounted expected rewards—as
typically considered in formal verification—that also keeps
memory usage effectively constant in the number of states. Its
efficiency depends only on the likelihood of sampling near-
optimal schedulers. modes implements the existing LSS
approaches for MDP [60] and PTA [21,46], for unbounded
properties on Markov automata (MA [30]) and provides
prototypical support [22] for LSS with different scheduler
classes [20] on stochastic automata (SA [23]). We describe
modes’ LSS implementation in Sect. 4.

The modes tool modes is part of the MODEST TOOLSET
[43], which also includes the explicit-state model checker
mcsta and the model-based tester motest [38]. It inherits the
toolset’s support for a variety of input formalisms, including
the high-level process algebra-based MODEST language [39]
and xSADF [44], an extension of scenario-aware dataflow.
Many other formalisms are supported via the JANI inter-
change format [13]. As simulation is easily and efficiently
parallelisable, modes fully exploits multi-core systems, but
can also be run in a distributed fashion across homogeneous
or heterogeneous clusters of networked systems. We describe
the various methods implemented to make modes a correct
and scalable statistical model checker that supports classes of
models ranging from discrete-time Markov chains (DTMC
[4]) to stochastic hybrid automata (SHA [32]) in Sect.2. We
focus on its software architecture in Sect. 5, explaining how
its flexibility and modularity make it easy to combine the
various individual techniques to obtain, for example, dis-
tributed rare event simulation with scheduler sampling for
expected rewards, and how new techniques, types of mod-
els, or measures of interest can be added. Finally, we provide
an evaluation of its features, flexibility, and performance in
Sects. 6, and 7: we first use three very different case studies to
highlight the varied kinds of models and analyses that modes
can handle and how it enables entirely new types of analy-
ses; we then compare the performance of its Monte Carlo
and rare-event simulation engines to PLASMA LAB, PRISM,
and FIG [8].

An efficient statistical model checker for nondeterminism and rare events

761

Previous publications. modes was first described in a tool
demonstration paper in 2012 [5]. At that time, its focus was
on the use of partial order and confluence reduction-based
techniques [47] to decide on-the-fly if the nondeterminism
in a model is spurious, i.e. whether maximum and minimum
values are the same and an implicit randomised sched-
uler can safely be used. modes was again mentioned as
a part of the MODEST TOOLSET in 2014 [43]. Since then,
modes has been completely redesigned. The partial order
and confluence-based methods have been replaced by LSS,
enabling the simulation of non-spurious nondeterminism;
automated importance splitting has been implemented for
rare event simulation; support for MA and SHA has been
added; the statistical evaluation methods have been extended
and improved. Concurrently, advances in the shared infras-
tructure of the MODEST TOOLSET, now at version 3, provide
access to new modelling features and formalisms as well as
support for the JANT specification.

This article is an extended version of a conference tool
paper on modes [11]. We have expanded Sect. 2.1 with exam-
ples and give a more detailed description of the differences
between the simulation algorithms implemented in modes.
We implemented a new statistical evaluation method and
significantly extended the corresponding Sect.2.3. Section
3 includes additional explanations and figures. In Sect.4,
we have added a description and illustrations of the new
scheduler histograms feature first introduced in [22]. Finally,
as suggested by the conference paper’s reviewers, we have
performed a systematic performance comparison with other
statistical model checkers. We report on the results in Sect. 7,
which now complements the modes-only experiments of
Sect. 6 (the purpose of which is to highlight the features and
versatility of the tool by itself).

2 Ingredients of a statistical model checker

A statistical model checker performs a number of tasks to
analyse a given formal model with respect to to a property
of interest. First, it needs to simulate a model, i.e. generate
random samples of its behaviour and determine the value of
the property for each of the samples. This value will typically
be 1 or 0 when estimating a probability, but can be an arbi-
trary (real or, in practice, floating-point) number for expected
rewards. It must then perform a statistical evaluation of the
sampled values, either on-the-fly or after a certain number of
samples have been generated, to determine when or if there
is enough evidence to return a result for the property with the
desired statistical error and confidence. Sample generation is
trivially parallelisable, but in doing so, the statistical model
checker must take care to avoid introducing a bias into the
evaluation. In this section, we describe how modes imple-
ments these tasks and addresses their inherent challenges. All

random selections in an SMC tool are typically resolved by
a pseudo-random number generator (PRNG). modes imple-
ments several different PRNGs; it uses the well-established
“Mersenne Twister MT19937” PRNG [64] by default. For
brevity, we write “random” to mean “pseudo-random” in this
section.

2.1 Simulating different model types

The most basic task of a statistical model checker is simula-
tion: the generation of random samples—simulation runs—
from the probability distribution over behaviours defined by
the model. The complexity of this task inherently depends
on the model type: Simulating a DTMC is conceptually
simple, but accurately simulating a stochastic hybrid sys-
tem with complex nonlinear dynamics requires advanced
techniques to e.g. make sure that no discrete events whose
timing depends on the evolution of the continuous quantities
are skipped. modes uses the infrastructure of the MODEST
TOOLSET to transform various input languages into an inter-
nal representation corresponding to a network of stochastic
hybrid automata (SHA [39]) with discrete variables. The
representation directly corresponds to a JANT model, com-
pactly representing a large or infinite state space. It is then
compiled into bytecode implementing a low-level interface
to explore the concrete state space, which modes shares
with the mcsta model checker. Based on this interface to
the compiled model, modes contains simulation algorithms
specifically optimised for the different types of models. As
the model types get more complex, so do the algorithms.
modes’ simulation runtime in practice is thus higher for the
more complex model types, especially for SHA. We thus
need to use the most specialised simulation algorithm for
each model. We graphically contrast the model types with
dedicated support in modes in Figs. 1 and 2.

2.1.1 DTMCand MDP

DTMC and MDP are discrete-time models, i.e. there is no
notion of continuous time; a simulation run moves from state
to state in discrete steps. The successor state of each step is
chosen according to a discrete probability distribution. In
MDP, but not in DTMC, a state may provide multiple out-
going transitions (usually distinguished by different action
labels such as a, b, and 7 in Fig. 1), representing nondeter-
ministic choices. Simulation for this type of model is simple
and efficient, and modes implements a single simulation
algorithm to cover both DTMC and MDP':

I Here and in the following subsections, we assume that models are
free of deadlocks and timelocks for clarity of presentation; modes does
correctly simulate models with deadlocks or timelocks.

@ Springer

C.E.Budde

Fig.1 Examples of different model types supported by modes

1. If the value of the property can be decided in the current
state at the current step count: return that value.

2. Obtain the current state’s transitions. DTMC will only
have one transition in this step.

3. Use LSS (Sect.4) to select one of the transitions.

4. Use the transition’s probability distribution to randomly
select a successor state.

5. Increment the step count and continue from the successor
state.

2.1.2 MA and CTMC

CTMC and MA are stochastic continuous-time models. In
CTMC, every transition is annotated with a rate. Let A be
the sum of the rates of all outgoing transitions of a state: the
state’s exit rate. The time spent in that state then follows a
(negative) exponential distribution with rate A, i.e. the prob-
ability to spend at most ¢ time units is 1 — e /. After that
time, one transition is chosen randomly—the probability of a
transition with rate A, being %—and the CTMC moves to the
transition’s target state. In the models of Fig. 1, we highlight
transitions with rates by squiggly lines. MA add a second
type of transitions that behave like those in MDP. The time
spent in a state that has at least one such transition is always
zero; thus, the probability of choosing a transition with a rate
out of such a state is also zero. Transitions with rates are
called Markovian, while those with actions as in MDP are
called immediate transitions. CTMC and MA are covered by
one simulation algorithm in modes, which is slightly more
involved than the one for MDP due to the need to manage
two types of transition and keep track of continuous time:

1. If the value of the property can be decided in the current
state at the current step count and total elapsed time ¢,
return that value.

2. Obtain the current state’s transitions and separate them
into Markovian and immediate transitions. CTMC will
only have Markovian transitions in this step.

3. If there is at least one immediate transition:

1. Use LSS (Sect.4) to select one of them.

@ Springer

PTA:

2. Use the transition’s probability distribution to ran-
domly select a successor state.

Otherwise, if there are only Markovian transitions:

1. Sample a value ¢’ from the exponential distribution

parameterised by the current state’s exit rate.

2. If the value of the property can be decided in the
current state at the current step count and at any point
between total elapsed times ¢ and ¢ + ¢/, return that
value.

. Increase r by t’'.

4. Pick one of the transitions randomly, using the rates

as probability weights. Its target is the successor state.

[SN]

4. Increment the step count and continue from the successor
state.

The algorithm relies on the memoryless property of the expo-
nential distribution: there is no need to keep a memory of time
(e.g. via clocks as in PTA and SHA) beyond the total elapsed
time to support time-bounded properties.

2.1.3 Probabilistic timed automata

Probabilistic timed automata (PTA [58]) extend MDP with
clock variables, edge guards, and location invariants as in
timed automata. Like M A, they are a continuous-time model,
but explicitly keep a memory of elapsed times in the clocks.
Due to the presence of variables and expressions, we say
that PTA are a symbolic model; a PTA thus consist of loca-
tions and edges. Its semantics is an MDP-like object with
uncountably many states and transitions; each state consists
of the current location and a valuation that assigns concrete
values to all clock variables. PTA admit finite-state abstrac-
tions that preserve reachability probabilities and allow them
to essentially be simulated as MDP. modes implements two
dedicated simulation algorithms for PTA based on the region
[21] and zone graph [46] abstractions. These abstractions
do not preserve rewards, and the algorithms are computa-
tionally much more involved than the ones for DTMC/MDP
and CTMC/MA. However, by performing simulation for the
continuous-time model of PTA on an entirely finite abstrac-

An efficient statistical model checker for nondeterminism and rare events

763

c>2,b,0

Fig.2 An example of the SHA model type

tion, they enable effective LSS for PTA (Sect.4). With fewer
restrictions, PTA can also be treated as SHA whenever LSS
is not needed:

2.1.4 Stochastic timed and hybrid automata

SHA extend PTA with general continuous probability dis-
tributions and continuous variables with dynamics governed
by differential equations and inclusions. We show a simple
example SHA in Fig. 2. If the differential equation for vari-
able ¢ is ¢ = 1 in all locations, i.e. if ¢ is a clock, this SHA
would be a stochastic timed automaton (STA [6]).

modes implements a simulation algorithm for determin-
istic SHA where all differential equations are of the form
v = e for a continuous variable v and an expression e over
discrete variables. This subset can be simulated without the
need for approximations; it corresponds to deterministic rect-
angular hybrid automata [48]. For each transition, the SHA
simulator needs to compute the set of time points at which it
is enabled. These sets can be unions of several disjoint inter-
vals, which results in relatively higher computational effort
for SHA simulation. Furthermore, since SHA may use gen-
eral probability distributions to control the passage of time
(the SHA of Fig.2, for example, uses a continuous uniform
distribution to determine the amount of time spent in the
rightmost location), all sampled values plus the values of all
clocks need to be stored and updated individually.

The SHA simulation algorithm operates on the semantics
where states are pairs of a location and a valuation for all
variables like in PTA. It proceeds as follows:

1. If the value of the property can be decided in the current
state at the current step count and total elapsed time ¢,
return that value.

2. Compute the set of delays after which the current loca-
tion’s invariant is still satisfied, and for each available
edge the set of delays after which the edge’s guard is
enabled.

3. Pick a delay 7 such that the invariant is continuously sat-
isfied and at least one edge is enabled. (If more than one

such delay exists, the SHA is nondeterministic, and we
abort simulation with an error message.)

4. If the value of the property can be decided in the current
state at the current step count and at any point between
total elapsed times ¢ and 7 + ¢/, return that value.

5. Increase f by ¢’ and update the values of all continuous
variables in the state’s valuation according to their dif-
ferential equations for the passage of 7’ time units.

6. If more than one edge is now enabled, either abort due to
nondeterminism, or use the LSS prototype implementa-
tion for SA (Sect.4) to select one of them.

7. Use the edge’s symbolic probability distribution evalu-
ated in the current state to randomly select a successor.

8. Increment the step count and continue from the successor
state.

2.2 Properties and termination

SMC computes a value for the property on every simulation
run. A run is a finite trace; consequently, standard SMC only
works for linear-time properties that can be decided on finite
traces. modes supports two classes of properties: transient
properties and expected rewards. They can come as gueries
for the concrete value (i.e. for the probability or the expected
reward) or as requirements that compare the value to a bound.
Every query ¢ can be turned into a requirement g ~ ¢ by
adding a comparison ~ € { <, >} to a constant value ¢ € R.

2.2.1 Transient properties

Transient (reachability) queries are of the form P(—avoid U
goal) for the probability of reaching a set of states charac-
terised by the state formula goal before entering the set of
states characterised by state formula avoid. A state formula is
an expression over the (discrete and continuous) variables of
the model without any temporal operators. Transient queries
may be step-, time-, and reward-bounded. An example tran-
sient query is “what is the probability to reach a destination
(goal) within an energy budget (a reward bound) while avoid-
ing collisions (avoid)”.

A simulation run ends when the value of a property is
decided. For transient properties, this is the case when reach-
ing a goal state (value 1), and when entering an avoid
state, encountering a deadlock, or violating a step, time, or
reward bound (value 0). To ensure termination, the probabil-
ity of eventually encountering one of these events must be
1. modes additionally implements cycle detection: it keeps
track of a configurable number n of previous visited states.
When a run returns to a previous state without intermedi-
ate steps of probability < 1, it will loop forever on this
cycle and the run has value 0. modes uses n = 1 by default
for good performance while still allowing models built for
model checking, which avoid deadlocks but often contain

@ Springer

764

C.E.Budde

terminal states with self-loops, to be simulated. Techniques
to detect bottom strongly connected components on-the-fly
[19] would enable SMC for unbounded linear-time properties
on Markov chains that do not conform to this requirement,
but they require additional information about the state space
and are not yet implemented in modes.

2.2.2 Expected rewards

Expected reward queries are of the form E(reward | goal) for
the expected accumulated reward (or cost) over the reward
structure reward when reaching a location in the set of states
characterised by goal for the first time. A reward structure
assigns a rate reward r (s) € R to every state s and a branch
reward r(b) € R to every probabilistic branch b of every
transition. Expected reward queries allow asking for e.g. the
expected number of retransmissions (the reward) until a mes-
sage is successfully transmitted (goal) in a wireless network
protocol.

For expected rewards, when entering a goal state, the prop-
erty is decided with the value being the sum of the rewards
along the run. By definition [31, Section 5.3], when a run
enters a deterministic cycle, an expected-reward property is
decided with value oco. One of these situations—reaching a
goal state or entering a deterministic cycle—must occur with
probability 1 to ensure termination for expected rewards.
Models built for model checking almost always have this
property, since otherwise the expected reward would be co
by definition and thus not of any particular interest.

2.3 Statistical evaluation of samples

Simulating n runs provides a sequence of independent values
v1, ..., v, for the property. v, = % >, vi is an unbiased
estimator of the actual probability or expected reward v. An
SMC tool must stop generating runs at some point, and quan-
tify the statistical properties of the estimate v = 10, returned
to the user. modes implements four different methods for this
purpose. All methods can be configured with three common
parameters:

— n:the number of simulation runs (unspecified by default),

— §: the level of “confidence” (0.95 by default), and

— €: the precision or half-width parameter, which can be
requested as absolute or relative precision (the latter
denoted “xe”, with defaults of 0.01 and 10 %, respec-
tively).

All methods require exactly one of the parameters to be
unspecified; the admissible combinations of parameters
depend on the method.

A priori, the outcome of the i-th simulation run is a
random variable X;. For transient properties using stan-

@ Springer

Table 1 The statistical evaluation methods implemented in modes

Parameter {0, 1}
values given transient (MC)

[0, c0)
transient (RES), rewards

Query Requirement Query Requirement
n,d Okamoto Okamoto
CI(binom.) CI(binom.)
n, e Okamoto Okamoto
8, € Adaptive SPRT CI (CLT)
Okamoto Adaptive
CI(binom.) Okamoto
CI(binom.)
8, xe Adaptive Adaptive
CI(binom.) CI(binom.)

dard Monte Carlo simulation, it is Bernoulli-distributed;
for transient properties using rare event simulation (Sect. 3)
and for expected-reward properties, it follows an unknown
distribution over [0, c0). Whether a statistical method as
implemented in modes can be applied to a model and prop-
erty depends on the distribution of the X;, on whether the
property is a query or a requirement, and on which param-
eter is left unspecified. We summarise these dependencies
in Table 1; bold entries mark the default method chosen
by modes in the specific situation unless another method
is explicitly requested by the user. We now provide a brief
description of each method; for a broader overview of statis-
tical methods and especially hypothesis tests for SMC, we
refer the interested reader to [70].

2.3.1 Confidence intervals

Confidence intervals are likely the most widely used method
to quantify the statistical properties of a probabilistic experi-
ment. modes’ CI method returns a confidence interval [x, y]
that contains v, with y — x = 2 - ¢. Its guarantee is that, if the
SMC analysis is repeated many times, 100 - § % of the confi-
dence intervals will contain v. For Bernoulli-distributed X;,
modes constructs a binomial proportion confidence inter-
val. It uses the “exact” Clopper—Pearson interval [18,73] for
v € {0, 1} and the Agresti—-Coull approximation [2] other-
wise. When the underlying distribution is unknown, modes
uses the standard normal (or Gaussian) confidence interval.
This relies on the central limit theorem for means, assuming
a “large enough” n. modes requires n > 50 as a heuristic.
Except for Clopper—Pearson, the computed interval is sym-
metric, i.e. x = ¥ — w. modes requires the user to specify §
plus either of €, and n.

If n is not specified, the CI method becomes a sequential
procedure: generate runs until the width of the interval for
confidence § is below 2 - €. This is the “Chow—Robbins”
method [17], which, however, has only been proven to

An efficient statistical model checker for nondeterminism and rare events

765

guarantee confidence § asymptotically as € goes to 0. A
corresponding warning message is generated whenever the
Chow-Robbins method is used. When 7 is not specified,
modes can also be instructed to interpret the value of ¢
as a relative half-width, i.e. the final interval will have
width ¥ - 2 - €. While this is useful for rare events (and
the only method for relative-width sequential estimation in
the generally distributed case currently implemented), it is
a “method of last resort” that is well-known not to guaran-
tee the requested confidence [33, Section 3]. modes prints
a more severe warning message than the one for the Chow—
Robbins method in this case. The CI method can be turned
into a hypothesis test for requirements g ~ ¢ by checking
whether ¥ > y or ¥ < x, and returning “undecided” if v is
inside the interval.

Due to the various problems described above, confidence
intervals are never chosen as a default by modes when
another method can be used instead (cf. Table 1). In the gener-
ally distributed case, however, the CI method based on the
central limit theorem assumption is the only method currently
available.

2.3.2 The Okamoto bound

The Okamoto method, based on the Okamoto bound [66]
(which is often referred to as the Chernoff-Hoeffding bound,
and sometimes called the “APMC method” for the first SMC
tool that implemented it [49]), guarantees for error € and
confidence § that P(|o—v| > €) < 1—4§.Itonly applies to the
case of Bernoulli-distributed samples here. modes requires
the user to specify any two of €, § and n, out of which the
missing value is computed by solving the bound equation

In(+%5)
2.¢2

n —=

accordingly (rounding up n to obtain an integer number of
runs as necessary). Note that this means that the admissible
parameter values are restricted such that n - (ez) > In(2)/2;
modes checks that this is the case and otherwise auto-selects
another method. The APMC method can be used as a hypoth-
esis test for P(-) ~ ¢ by checking whether 0 > ¢ + € or
U < ¢ — ¢, and returning “undecided” if neither is true.

The main advantage of the Okamoto method—that any
one missing parameter can be precomputed from the other
two before simulation runs start—is also its main weakness:
unless the true probability is close to 0.5, it requires far more
runs than sequential methods that adapt n to the results of the
runs as they come in. For this reason, the Okamoto method is
used as the default only in those cases where the number of
runs is explicitly specified by the user. In all other (Bernoulli)
cases, it selects one of the two sound sequential methods
presented below.

2.3.3 The new adaptive sampling method

The Adaptive method in modes implements the new adap-
tive sampling approach by Chen and Xu [16, Section III].
It is a sequential method, i.e. it requires n to be unspecified
and performs simulation runs until a stopping criterion is
met. The stopping criterion comes in two versions, one for
absolute € and one for relative error. The former provides
the same guarantee as the Okamoto method, while the latter
guarantees that P(|]0 —v| > €-v) < 1—4§. The key difference
to the Okamoto method is that both stopping criteria take v,
into account. For example, the one for absolute € is to keep
generating runs as long as

2-In(7%5) (1 (
n< ——>——-|7—
€ 4

In this way, the Adaptive method needs far fewer runs for the
same € and § than the Okamoto method if v is far from 0.5. If
v is close to 0.5, then it will require the same number of runs.
The Adaptive method can be used for hypothesis testing to
handle requirements in the same way as the Okamoto method.

The Adaptive method is the only one implemented in
modes that provides guaranteed confidence for relative e.
Since it is also no worse than the Okamoto method in terms
of the number of runs, modes chooses it as the default method
for Bernoulli-distributed X; when the number of runs is
unspecified, except for the case of absolute ¢ for require-
ments, where the SPRT method is preferred (see below).

We have experimentally compared the number of runs
required by the Okamoto and Adaptive methods on several
of the DTMC models used in Sect.7 with § = 0.95 and
absolute € = 0.001. The results are shown in Table 2 (with
“M” indicating millions of runs). For the Adaptive method,
we report the averages over five independent invocations of
modes. 0 is the average of the estimates reported for all
six invocations. We used the same hardware as in Sect.7,
and multi-core simulation with 3 threads. We see that the
Adaptive method indeed drastically reduces the number of
runs needed, and consequently the simulation time, in those
cases where the value is far from 0.5.

2.3.4 The sequential probability ratio test

modes also implements Wald’s SPRT, the sequential proba-
bility ratio test [78]. As a sequential hypothesis test, it has no
predetermined n, but decides on-the-fly whether more sam-
ples are needed as they come in, like the Adaptive method. It
is atest for Bernoulli-distributed quantities, i.e. it only applies
to transient requirements of the form IP(-) ~ ¢ when analysed
with standard Monte Carlo simulation. modes interprets € as
the indifference level parameter of the SPRT and sets its error

@ Springer

766

C.E.Budde

Table2 The Adaptive and

Okamoto methods compared Model Instance 0 Okamoto Adaptive
Runs Time Runs Time
brp 16-2 0.00 1.84M 3ls 7221 Is
32-3 0.00 57s 4980 Is
crowds 3-5 0.05 1.84M 12s 0.38M 4s
5-15 0.09 18 s 0.62M Ts
6-20 0.12 22s 0.79M 10s
egl 5-2 0.52 1.84M 31s 1.84M 31s
10-6 0.50 137 s 1.84M 136 s
20-8 0.50 347 s 1.84M 3545
leader_sync 4-3 1.00 1.84M 5s 4920 1s
5-4 1.00 Ss 5100 Is
nand 20-2 0.42 1.84M 74s 1.79M 66 s
40-3 0.58 187 s 1.80M 176 s
60-4 0.69 350 s 1.59M 293 s

parameter « to 1 — §. The SPRT method stops when the col-
lected samples so far provide sufficient evidence to decide
between v > ¢ + € or v < ¢ — € with probability < « of
wrongly accepting either hypothesis. Note in particular that,
in contrast to the hypothesis tests constructed from the pre-
vious methods, the SPRT has no “undecided” result; instead,
if v is too close to c, it will randomly report the requirement
as satisfied or unsatisfied.

The number of runs actually needed before the SPRT stops
depends on the difference between the actual value v and the
bound c; the larger it is, the sooner will the test conclude. The
SPRT is optimal [79], i.e. there cannot be another sequential
test that, for the same & and €, needs fewer runs on average.
For this reason, modes uses the SPRT as the default for the
one case where it is applicable (cf. Table 1).

2.4 Distributed sample generation

Simulation is easily and efficiently parallelisable. Yet a naive
implementation of the statistical evaluation—processing val-
ues from the runs in the order they flow in—risks introducing
a bias in a parallel setting. Consider estimating the probabil-
ity of system failure when simulation runs that encounter
failure states are shorter than other runs, and thus quicker. In
parallel simulation, failure runs will tend to arrive earlier and
more frequently, thus overestimating the probability of fail-
ure. To avoid such bias, modes uses the adaptive schedule
first implemented in YMER [80]. It works as follows, assum-
ing simulation on n parallel nodes:

1. Initialise the schedule as queue ¢ = [1, ..., n]. Create
an empty queue of results g; foreachi € {1,...,n}.

@ Springer

2. Wait for the result r of a simulation run to arrive. Let i
be the number of the node that generated r. Enqueue i in
q and enqueue r in g;.

3. Leti = front(q). If g; is empty, go back to step 2. Other-
wise, dequeue i from ¢ and let r = dequeue(r). Process
the result » and repeat step 3.

This method adapts to differences in the speed of nodes by
scheduling to process more future results from fast nodes
when current results come in quickly. It always commits to
a schedule a priori before the actual results arrive, ensur-
ing the absence of bias. In contrast to other methods such
as the buffered fixed schedule of UPPAAL SMC [14], it is
thus well-suited for heterogeneous clusters of machines with
significant performance differences.

3 Automated rare event simulation

With the standard confidence of § = 0.95, we have n ~
1.84/¢? in the Okamoto method: for every decimal digit of
precision, the number of runs increases by a factor of 100.
If we attempt to estimate probabilities on the order of 1074,
i.e. € &~ 107, we need billions of runs and days or weeks
of simulation time. This is the problem tackled by rare event
simulation (RES) methods [72]. These increase the number
of simulation runs that reach the rare event and adjust the
statistical evaluation accordingly. The main RES methods
are importance sampling and importance splitting. The for-
mer modifies the probability distributions that are part of the
model, with the aim to make the event more likely to occur.
The challenge lies in finding a “good” change of measure
to modify probabilities in an effective way. Importance sam-

An efficient statistical model checker for nondeterminism and rare events

767

pling approaches are thus tailored to a specific type of model,
and in particular mostly to different variants of and property
types for Markov chains. Importance splitting instead does
not modify the model, but rather changes the simulation algo-
rithm to perform more (partial) simulation runs, which start
from non-initial states and end early. Most importance split-
ting algorithms thus readily work for a wide range of different
model types. Here, the challenge is to find an importance
function fr: S — N that maps each state in S to its impor-
tance in {0, ..., max f7 }: a value indicating how “close” it
is to the rare event. More (partial) runs will be started from
states with higher importance. The performance, but not the
correctness, of all splitting methods hinges on the quality of
the importance function.

modes implements RES for transient properties. Due to
its focus on supporting different model types, including mod-
els with general probability distributions like SA and SHA, it
uses importance splitting. modes implements recently devel-
oped methods to select all parameters of importance splitting,
notably the importance function itself, in a fully automated
way. We now give an overview of how these methods work,
then present the three adjusted simulation algorithms that
perform splitting in modes. For a more in-depth review of
these techniques, we refer the interested reader to [10].

3.1 Deriving importance functions

Traditionally, the importance function is specified ad hoc
by a RES expert [15,27,36,71,74,77]. Striving for usability
by domain experts, modes implements the compositional
importance function generation method of [12] that is appli-
cable to any compositional stochastic model M =M | ... ||
M, with a partly discrete state space. We write s|; for the
projection of state s of M to the discrete local variables of
component ;. The method works as follows [9]:

1. Convert the goal set formula goal to negation normal
form (NNF) and associate each literal goal/ with the
component M(goal’) whose local state variables it refers
to. Literals are required to not refer to multiple compo-

nents.
2. Explore the discrete part of the state space of each com-
ponent ;. For each goal! with M; = M(goal’), use

reverse breadth-first search to compute the local mini-
mum distance fij (s];) of each state s|; to a state satisfying
goal’ .

3. In the syntax of the NNF of goal, replace every occur-
rence of goal’ by £/ (s|;) withi such thatM; = M(goal/),
and every Boolean operator A or V by +. Use the result-
ing formula as the importance function fj(s).

The method takes into account both the structure of the
goal set formula and of the state space. This is in contrast

Ty —10 L ®

Fig.3 Illustration of RESTART [9]

time

Fig.4 Illustration of fixed effort [9]

to the approach of Jégourel et al. [52], implemented in a
semi-automated fashion [54] in PLASMA LAB [61], that only
considers the structure of the (more complex linear-time)
property. The memory usage of the compositional method is
determined by the number of discrete local states (required
to be finite) over all components. Component state spaces are
usually small even when the composed state space explodes
combinatorially.

3.2 Levels and splitting factors

We also need to specify when and how much to “split”, i.e.
increase the simulation effort. For this purpose, the values
of the importance function are partitioned into levels and a
splitting factor is chosen for each level [77]. Splitting too
much too often will degrade performance (oversplitting),
while splitting too little will cause starvation, i.e. few runs
that reach the rare event. It is thus critical to choose good lev-
els and splitting factors. Again, to avoid the user having to
make these choices ad hoc, modes implements two methods
to compute them automatically. One is based on the sequen-

@ Springer

C.E.Budde

768
T, —10

5
Ty

Fig.5 Illustration of fixed success [9]

tial Monte Carlo splitting technique [15], while the other
method, expected success [9], has been newly developed for
modes. It strives to find levels and factors that lead to one
run moving up from one level to the next in the expectation.

3.3 Importance splitting runs

The derivation of importance function, levels, and splitting
factors is a preprocessing step. Importance splitting then
replaces the simulation algorithm by a variant that takes this
information into account to more often encounter the rare
event. modes implements three importance splitting tech-
niques: RESTART, fixed effort, and fixed success. They are
implemented as wrappers around the simulation algorithms
described in Sect.2.1 and can be freely combined with any
of them, i.e. with any model type supported by modes.

For all three methods, the average of the result of many
runs is again an unbiased estimator for the probability of the
transient property [34]. However, each run is no longer a
Bernoulli trial. Of the statistical evaluation methods offered
by modes, only CI with the central limit theorem assumption
is thus applicable. For a deeper discussion of the chal-
lenges in the statistical evaluation of rare event simulation
results, we refer the interested reader to [69]. To the best
of our knowledge, modes is today the most automated rare
event simulator for general stochastic models. In particular,
it defaults to the combination of RESTART with the expected
success method for level calculation, which has shown the
most consistently good performance in [9].

3.3.1 Restart

RESTART [76] is illustrated in Fig.3: As soon as a RESTART
run crosses the threshold into a higher level, ny — 1 new child
runs are started from the first state in the new level, where
ny is the splitting factor of level £. When a run moves below

@ Springer

its creation level, it ends. It also ends on reaching an avoid
or goal state. The result of a RESTART run—consisting of a
main and several child runs—is the number of runs that reach
goal times 1/ [], ne, i.e. a rational number greater than or
equal to zero.

3.3.2 Fixed effort

Runs of the fixed effort method [34,35], illustrated in Fig.4,
are rather different. They consist of a fixed number of partial
runs on each level, each of which ends when it crosses into
the next higher level or encounters a goal or avoid state.
When all partial runs for a level have ended, the next round
starts from the previously encountered initial states of the
next higher level. When a fixed effort run ends, the fraction
of partial runs started in a level that moved up approximates
the conditional probability of reaching the next level given
that the current level was reached. If goal states exist only
on the highest level, the overall result is the product of all of
these fractions, i.e. a rational number in the interval [0, 1].

3.3.3 Fixed success

Fixed success [3,63] is a variant of fixed effort that generates
partial runs until a fixed number of them have reached the
next higher level. It is illustrated in Fig.5. We have found it
to usually not be any more efficient than fixed effort, but it
comes with the possibility of divergence in case the initial
states of one level happen to be such that no run starting from
them has the possibility to move up to the next level.

4 Scheduler sampling for nondeterminism

Resolving nondeterminism in arandomised way leads to esti-
mates that only lie somewhere between the desired extremal
values. In addition to computing probabilities or expected
rewards, we also need to find a (near-)optimal scheduler. In
our setting of undiscounted properties, this is possible using
simulation-based machine learning algorithms following the
ideas of [7] to incrementally improve a candidate scheduler;
however, these methods cancel a key advantage of SMC:
memory usage is no longer constant in the size of the state
space since the scheduler’s decisions for all visited states
need to be stored. Currently, the only approach that does
better than random resolution but keeps memory usage con-
stant is the lightweight scheduler sampling technique of [60],
which modes implements for MDP, PTA, and special classes
of SA.

An efficient statistical model checker for nondeterminism and rare events

769

4.1 Lightweight scheduler sampling

The lightweight scheduler sampling (LSS) approach for
MDP identifies a scheduler by a single integer (typically of
32 bits). This allows to randomly select a large number m
of schedulers (i.e. integers), perform standard or rare event
simulation for each, and report the maximum and minimum
estimates over all sampled schedulers as approximations of
the actual extremal values. We show the core of the light-
weight approach—performing a simulation run for a given
scheduler identifier c—for MDP and transient properties as
Algorithm 1. An MDP consists of a countable set of states
S, a transition function 7 that maps each state to a finite
set of probability distributions over successor states, and an
initial state sg. The algorithm uses two PRNG: % to sim-
ulate the probabilistic choices (line 6), and %,q to resolve
the nondeterministic ones (line 5). We want o to represent
a deterministic memoryless scheduler: within one simula-
tion run as well as in different runs for the same value of o,
Unq must always make the same choice for the same state s.
To achieve this, %,q is re-initialised with a seed based on
o and s in every step (line 4). The overall effectiveness of
the lightweight approach only depends on the likelihood of
selecting a o that represents a (near-)optimal scheduler. We
want to sample “uniformly” from the space of all sched-
ulers to avoid accidentally biasing against “good” schedulers.
More precisely, a uniformly random choice of o shall result
in a uniformly chosen (but fixed) resolution of all nonde-
terministic choices. Algorithm 1 achieves this naturally for
MDP.

Input: MDP (S, T, s0), transient property ¢, scheduler id o € Z

1 §:=80,T:=S50

2 while ¢(7) = undecided do

3 if 7(s) = @ then return false // deadlock: end of run
Una-initialise(A(0.s)) // use hash of ¢ and s to seed Uya
w:=T(s)[[%a-|T($)|]] // use Uq to select transition
"= [o Upyr.next() // use Uy to select successor via [
n:=mn.s,s:=s //appends' to w and continue from s'

PSR- N IS

8 return ¢ (7)

Algorithm 1: MDP simulation for one scheduler id [21]

4.2 Scheduler sampling beyond MDP

LSS can be adapted to any model and type of property where
the class of optimal schedulers only uses discrete input to
make its decision for every state [46]. This is obviously the
case for discrete-space discrete-time models like MDP. It
means that LSS can directly be applied to MA and time-
unbounded properties, too, since they are preserved on the
MA'’s embedded MDP (which uses the rates only as weights
to select the successor state, ignoring their semantics with

respect to the passage of time). In addition to MDP and
MA, modes also supports two LSS methods for PTA, based
on a variant of forwards reachability with zones [21] and
the region graph abstraction [46], respectively. While the
former includes zone operations with worst-case runtime
exponential in the number of clocks, the latter implements
all operations in linear time. It exploits a novel data structure
for regions based on representative valuations that performs
very well in practice. Extending LSS to models with gen-
eral continuous probability distributions such as stochastic
automata is hindered by optimal schedulers requiring non-
discrete information, namely the values and expiration times
of all clocks [20]. modes currently provides prototypical
LSS support for SA encoded in a particular form and var-
ious restricted classes of schedulers as described in [20,22].
We refer the interested reader to [22] for a more detailed
presentation and comparison of modes’ LSS methods for
continuous-time models.

4.3 Scheduler histograms

The effectiveness of LSS hinges on the probability of sam-
pling near-optimal schedulers. To allow users to investigate
the distribution of schedulers, modes also returns the prob-
abilities estimated for all m sampled schedulers. From this
data, we can create histograms that visualise the distribution
of schedulers with respect to the probabilities they induce.
We show such a histogram for a PTA model of the IEEE 1394
FireWire root contention protocol (firewire model) in Fig. 6,
and for a PTA model of IEEE 802.11 wireless LAN (wlan
model) in Fig. 7. The properties we analyse are the probabil-
ity of termination in 4000 ns for firewire and the probability of
either of the two modelled stations’ backoff counters reach-
ing value 2 within one transmission for wian. As the state
spaces of both models are small enough for model check-
ing with mcsta to be possible, we know that the minimum
and maximum probabilities are, respectively, 0.781 and 1 for
firewire, and 0.039 and 0.063 for wlan. We use the region-
based