
MaskD: A Tool for Measuring Masking
Fault-Tolerance?

Luciano Putruele1,3(�) , Ramiro Demasi2,3 ,
Pablo F. Castro1,3 , and Pedro R. D’Argenio2,3,4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina, {lputruele,pcastro}@dc.exa.unrc.edu.ar

2 Universidad Nacional de Córdoba, FAMAF, Córdoba, Argentina,
{rdemasi,pedro.dargenio}@unc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract. We present MaskD, an automated tool designed to measure
the level of fault-tolerance provided by software components. The tool
focuses on measuring masking fault-tolerance, that is, the kind of fault-
tolerance that allows systems to mask faults in such a way that they
cannot be observed by the users. The tool takes as input a nominal model
(which serves as a specification) and its fault-tolerant implementation,
described by means of a guarded-command language, and automatically
computes the masking distance between them. This value can be under-
stood as the level of fault-tolerance provided by the implementation. The
tool is based on a sound and complete framework we have introduced in
previous work. We present the ideas behind the tool by means of a sim-
ple example and report experiments realized on more complex case studies.

1 Introduction

Fault-tolerance is an important characteristic of critical software. It can be
defined as the capability of systems to deal with unexpected events, which may
be caused by code bugs, interaction with an uncooperative environment, hardware
malfunctions, etc. Examples of fault-tolerant systems can be found everywhere:
communication protocols, hardware circuits, avionic systems, cryptocurrencies,
etc. So, the increasing relevance of critical software in everyday life has led to a
renewed interest in the automatic verification of fault-tolerant properties. However,
one of the main difficulties when reasoning about these kinds of properties is given
by their quantitative nature, which is true even for non-probabilistic systems. A
simple example is given by the introduction of redundancy in critical systems.
This is, by far, one of the most used techniques in fault-tolerance. In practice, it

? This work was supported by ANPCyT PICT-2017-3894 (RAFTSys), ANPCyT PICT
2019-03134, SeCyT-UNC 33620180100354CB (ARES), and EU Grant agreement ID:
101008233 (MISSION).

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_22
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 396–403, 2022.

http://orcid.org/0000-0002-3063-4704
http://orcid.org/0000-0003-1651-624X
http://orcid.org/0000-0002-5835-4333
http://orcid.org/0000-0002-8528-9215
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_22

is well known that adding more redundancy to a system increases its reliability.
Measuring this increment is a central issue for evaluating fault-tolerant software.
On the other hand, there is no de-facto way to formally characterize fault-tolerant
properties. Thus these properties are usually encoded using ad-hoc mechanisms
as part of a general design.

The usual flow for the design and verification of fault-tolerant systems consists
of defining a nominal model (i.e., the “fault-free” or “ideal” program) and
afterwards extending it with faulty behaviors that deviate from the normal
behavior prescribed by the nominal model. This extended model represents the
way in which the system operates under the occurrence of faults. More specifically,
a model extension enriches a transition system by adding new (faulty) states and
transitions from and to those states, namely fault-tolerant implementation.

On the other hand, during the last decade, significant progress has been made
towards defining suitable metrics or distances for diverse types of quantitative
models including real-time systems [11], probabilistic models [7], and metrics for
linear and branching systems [5,2,10,13,19]. Some authors have already pointed
out that these metrics can be useful to reason about the robustness of a system,
a notion related to fault-tolerance.

We present MaskD, an automated tool designed to measure the level of fault-
tolerance among software components, described by means of a guarded-command
language. The tool focuses on measuring masking fault-tolerant components, that
is, programs that mask faults in such a way that they cannot be observed by the
environment. It is often classified as the most beneficial kind of fault-tolerance
and it is a highly desirable property for critical systems. The tool takes as
input a nominal model and its fault-tolerant implementation and automatically
computes the masking distance between them. It is based on a framework we
have introduced in [4], and shown to be sound and complete. In Section 2 we
give a brief introduction to this framework.

The tool is well suited to support engineers for the analysis and design of
fault-tolerant systems. More precisely, it uses a computable masking distance
function such that an engineer can measure the masking tolerance of a given
fault-tolerant implementation, i.e., the number of faults that the implementation
is able to mask in the worst case. Thereby, the engineers can measure and compare
the masking fault-tolerance distance of alternative fault-tolerant implementations,
and select one that best fits their preferences.

2 The MaskD Tool

MaskD takes as input a nominal model and its fault-tolerant implementation,
and produces as output the masking distance between them, which is a value in
the interval [0, 1]. The input models are described using the guarded command
language introduced in [3], a simple programming language common for describing
fault-tolerant algorithms. More precisely, a program is a collection of processes,
where each process is composed of a collection of labelled actions of the style:
[Label] Guard → Command, where Guard is a Boolean condition over the actual

MaskD: A Tool for Measuring Masking Fault-Tolerance 397

Process MEMORY {
w : BOOL; // the last value written
r : BOOL; // the value read from the

// memory
c0 : BOOL;

Initial: w && c0 && r;

[write1] true -> w=true, c0=true,
r=true;

[write0] true -> w=false, c0=false,
r=false;

[read0] !r -> r=r;
[read1] r -> r=r;

}

Process MEMORY FT {
w : BOOL;
r : BOOL;
c0 : BOOL; // first bit
c1 : BOOL; // second bit
c2 : BOOL; // third bit

Initial: w && c0 && c1 && c2 && r;

[write1] true -> w=true, c0=true, c1=true,
c3=true, r=true;

[write0] true -> w=false, c0=false, c1=false,
c3=false, r=false;

[read0] !r -> r=r;
[read1] r -> r=r;
[fail1] faulty true -> c0=!c0, r =(!c0&&c1)||(c1&&c2)||

(!c0&&c2);
[fail2] faulty true -> c1=!c1, r =(c0&&!c1)||(!c1&&c2)||

(c0&&c2);
[fail3] faulty true -> c2=!c2, r =(c0&&c1)||(c1&&!c2)||

(c0&&!c2);

}

Fig. 1. Processes for a memory cell example. On the left is the Nominal Model and on
the right is the Fault-tolerant Model.

state of the program, Command is a collection of basic assignments, and Label
is a name for the action. These syntactic constructions are called actions. The
language also allows users to label an action as internal (i.e., silent actions). This
is important for abstracting away internal parts of the system and building large
models. Moreover, some actions can be labeled as faulty to indicate that they
represent faults.

In order to compute the masking distance between two systems the tool uses
notions coming from game theory. More precisely, a two-player game (played by
the Refuter (R) and the Verifier (V)) is constructed using the two models. The
intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her
choice. However, when the Refuter chooses a fault, the Verifier must match it
with a masking transition. R wins if the game reaches the error state, denoted
verr . On the other hand, V wins when verr is not reached during the game.
Rewards are added to certain transitions in the game to reflect the fact that a
fault was masked. Thus, given a play (a maximal path in the game graph) a
function fmask computes the value of the play: if it reaches the error state, the
value is inversely proportional to the number of masking movements made by
the Verifier; if the play is infinite, it receives a value of 0 indicating that the
implementation was able to mask all the faults in the path. Summing up, the
fault-tolerant implementation is masking fault-tolerant if the value of the game is
0. Furthermore, the bigger the number, the farther the masking distance between
the fault-tolerant implementation and the specification.

As a running example, we consider a memory cell that stores a bit of infor-
mation and supports reading and writing operations, presented in a state-based
form in [6]. A state in this system maintains the current value of the memory cell
(m = i, for i = 0, 1), writing allows one to change this value, and reading returns
the stored value. In this system the result of a reading depends on the value
stored in the cell. Thus, a property that one might associate with this model is

L. Putruele et al.398

Fig. 2. Architecture of MaskD.

that the value read from the cell coincides with that of the last writing performed
in the system.

A potential fault in this scenario occurs when a cell unexpectedly loses its
charge, and its stored value turns into another one (e.g., it changes from 1 to 0
due to charge loss). A typical technique to deal with this situation is redundancy :
in this case, three memory bits are used instead of only one. Writing operations
are performed simultaneously on the three bits. Reading, on the other hand,
returns the value that is repeated at least twice in the memory bits; this is
known as voting. Figure 1 shows the processes representing the nominal and the
fault-tolerant implementation of this example.

2.1 Architecture

MaskD is open source software written in Java. Documentation and installation
instructions can be found at [1]. The architecture of the tool is shown in Fig. 2.
We briefly describe below the key components of the tool:

Parser Module. It performs basic syntactic analysis over the input models,
and produces data structures describing the inputs. Libraries Cup and JFlex
were used to automatically generate the parser from the grammar describing
the modeling language.

LTS Translation. The models obtained from the parser are translated into
Labeled Transition Systems (LTSs), i.e., graphs whose vertices represent
program states and whose transitions keep information about the actions in
the models.

Silent Transition Saturation. The internal/silent transitions in the LTSs rep-
resenting the input models are saturated using standard algorithms coming
from process algebras [14]. As a result, saturated LTSs are generated, these
are needed for verifying the masking relation when internal transitions are
present.

Game Graph Generation. It uses the saturated LTSs to produce a game
graph. Nodes in this graph encode the actual configuration of the game: the
next player to play, the last played action, and references to the LTS states
corresponding to the actual configuration of the game. Transitions in this
graph correspond to the possible plays for the players, i.e., transitions in the
original LTSs.

MaskD: A Tool for Measuring Masking Fault-Tolerance 399

G

Nominal Model

Fault-Tolerant
Model

Parser
Module

Silent
Transition
Saturation

Game
Graph

Generation

Shortest Path
Algorithm

Masking
Distance

LTS
Translation

Fix-Point
Algorithm

Error Trace

Distance
Calculator

Game Builder

0. ERR STATE
1. { <> , I m1.read1 , <m1r,m1c0,m1c2> , V }
2. { <> , # , <m1r,m1c0,m1c2> , R }
3. { <> , I m1.fail1 , <m1r,m1c0,m1c2> , V }
4. { <> , # , <m1c2> , R }
5. { <> , I m1.fail3 , <m1c2> , V }
6. { <> , # , <> , R }
7. { <m1w,m1r,m1c0> , I m1.write0 , <> , V }
8. { <m1w,m1r,m1c0> , # , <m1w,m1r,m1c0,m1c1,m1c2> , R }

Fig. 3. Error trace for the memory cell example.

Shortest Path Algorithm. If the input models are deterministic, Dial’s short-
est path algorithm is used to get the shortest path to the error state, from
which the final value is calculated.

Fix-Point Algorithm. If the input models are non-deterministic, a bottom-up
breadth-first search is used to compute the value of the game. This algorithm
is based on well-known algorithms to solve reachability games that use
attractor sets [15].

As explained above, an interesting point about our implementation is that,
for deterministic systems, the masking distance between two systems can be
computed by resorting to Dial’s shortest path algorithm [17], which runs in linear
time with respect to the size of the graphs used to represent the systems. In
the case of non-deterministic systems, a fixpoint traversal approach based on
breadth-first search is needed, making the algorithm less efficient. However, even
in this case, the algorithm is polynomial.

2.2 Usage

The standard command to execute MaskD in a Unix operating system is:

./MaskD <options> <spec_path> <imp_path>

In this case the tool returns the masking distance between the specification and
the implementation. Possible optional commands are: -t: print error trace,
prints a trace to the error state; and -s: start simulation, starts a simu-
lation from the initial state. A path to the error state is a useful feature for
debugging program descriptions, which may be failing for unintended reasons.
A trace for the memory cell example is shown in Fig. 3. States are denoted as
{spec_state, last_action_played, imp_state, player_turn}. In this case,
after two faults (bits being flipped), performing a read on the cell leads to the
error state since on the nominal model the value is 0 while on the fault-tolerant
model the value read by majority is 1. On the other hand, the simulation feature
allows the user to manually select the available actions at each point of the mask-
ing game, which is also useful for verifying that the models behave as intended.
By default, MaskD computes the masking distance for the given input using the
algorithm for non-deterministic systems. The user can use option -det to switch
to the deterministic masking distance algorithm.

L. Putruele et al.400

Case Study Redundancy M. Distance Time Time(Det)

Redundant Memory Cell
3 bits 0.333 0.7s 0.6s
5 bits 0.25 2.5s 1.9s
7 bits 0.2 7.2s 5.7s

N-Modular Redundancy
3 modules 0.333 0.6s 0.5s
5 modules 0.25 1.2s 0.7s
7 modules 0.2 5.6s 3.8s

Dining Philosophers
2 philosophers 0.5 0.6s 0.6s
3 philosophers 0.333 1.9s 0.9s

Byzantine Generals
3 generals 0.5 0.9s −
4 generals 0.333 17.1s −

Raft LRCC (5)
1 follower 0 0.7s 0.8s
2 followers 0 5.6s 3.6s

BRP (5)
1 retransm. 0.333 4.2s −
5 retransm. 0.143 4.8s −
10 retransm. 0.083 6.1s −

Table 1. Some results of the masking distance for the case studies.

3 Experiments

We report on Table 1 some results of the masking distance for multiple instances of
several case studies. These are: a Redundant Cell Memory (our running example),
N-Modular Redundancy (a standard example of fault-tolerant system [18]), a
variation of the Dining Philosophers problem [8], the Byzantine Generals problem
introduced by Lamport et al. [12], the Log Replication consistency check of Raft
[16], and the Bounded Retransmission Protocol (a well-known example of fault-
tolerant protocol [9]) where we have modeled using silent actions and evaluating
it with the weak masking distance. All case studies have been evaluated using
the algorithms for both deterministic and non-deterministic games, with the
exception of the non-deterministic models (i.e., the Byzantine Generals problem
and the Bounded Retransmission Protocol). It is worth noting that most of
the computational complexity arises from building the game graph rather than
the actual masking distance calculation. For space reasons, we omit details of
each case study and its complete experimental evaluation (delegated to the tool
documentation).

Some words are useful to interpret the results of our running example. For
the case of a 3 bit memory the masking distance is 0.333; the main reason for
this is that the faulty model (in the worst case) is only able to mask 2 faults (in
this example, a fault is an unexpected change of a bit) before failing to replicate
the nominal behaviour (i.e., reading the majority value). Thus, the result comes
from the definition of masking distance and taking into account the occurrence
of two faults. The situation is similar for the other instances of this problem with
more redundancy.

We have run our experiments on a MacBook Air with a 1.3 GHz Intel Core
i5 processor and 4 GB of memory. The case studies for reproducing the results
are available in the tool repository.

MaskD: A Tool for Measuring Masking Fault-Tolerance 401

References

1. MaskD: Masking Distance Tool. https://doi.org/10.5281/zenodo.5815693
2. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE

Trans. Software Eng. 35(2), 258–273 (2009)
3. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering 19(11) (1993)
4. Castro, P.F., D’Argenio, P.R., Demasi, R., Putruele, L.: Measuring masking fault-

tolerance. In: TACAS 2019, Prague, Czech Republic (2019)
5. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput.

Sci. 413(1), 21–35 (2012)
6. Demasi, R., Castro, P.F., Maibaum, T.S.E., Aguirre, N.: Simulation relations for

fault-tolerance. Formal Asp. Comput. 29(6), 1013–1050 (2017)
7. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled

Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)
8. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1(2),

115–138 (1971)
9. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data

packets. In: Algebraic Methodology and Software Technology, 5th International
Conference, AMAST ’96, Munich, Germany, July 1-5, 1996, Proceedings. pp. 536–
550 (1996)

10. Henzinger, T.A.: Quantitative reactive modeling and verification. Computer Science
- R&D 28(4), 331–344 (2013)

11. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between
timed systems. In: Formal Modeling and Analysis of Timed Systems, Third Inter-
national Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005,
Proceedings. pp. 226–241 (2005)

12. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

13. Larsen, K.G., Fahrenberg, U., Thrane, C.R.: Metrics for weighted transition systems:
Axiomatization and complexity. Theor. Comput. Sci. 412(28), 3358–3369 (2011)

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

15. nski, M.J.: Algorithms for solving parity games. In: Apt, K.R., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientist, chap. 3, pp. 74–95. Cambridge
University Press, New York, NY, USA (2011)

16. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference. pp. 305–319. USENIX Association
(2014)

17. R.B.Dial: Algorithm 360: shortest-path forest with topological ordering. Communi-
cations of ACM 12 (1969)

18. Shooman, M.L.: Reliability of Computer Systems and Networks: Fault Toler-
ance,Analysis,and Design. John Wiley & Sons, Inc (2002)

19. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

L. Putruele et al.402

https://doi.org/10.5281/zenodo.5815693

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

MaskD: A Tool for Measuring Masking Fault-Tolerance 403

http://creativecommons.org/licenses/by/4.0/

	MaskD: A Tool for Measuring Masking Fault-Tolerance
	1 Introduction
	2 The MaskD Tool
	2.1 Architecture
	2.2 Usage

	3 Experiments
	References

