Words and the Company they keep

Motivation

- Environment:
 - mostly "not a full analysis (sentence/text parsing)"
- · Tasks where "words & company" are important:
 - word sense disambiguation (MT, IR, TD, IE)
 - lexical entries: subdivision & definitions (lexicography)
 - language modeling (generalization, [kind of] smoothing)
 - word/phrase/term translation (MT, Multilingual IR)
 - NL generation ("natural" phrases) (Generation, MT)
 - parsing (lexically-based selectional preferences)

Collocations

- Collocation
 - Firth: "word is characterized by the company it keeps"; collocations of a given word are statements of the habitual or customary places of that word.
 - non-compositionality of meaning
 - cannot be derived directly from its parts (heavy rain)
 - non-substitutability in context
 - for parts (red light)
 - non-modifiability (& non-transformability)
 - kick the vellow bucket; take exception to

Association and Co-occurence; Terms

- Does not fall under "collocation", but:
- Interesting just because it does often [rarely] appear together or in the same (or similar) context:
 - (doctors, nurses)
 - (hardware, software)
 - (gas, fuel)
 - (hammer, nail)
 - (communism, free speech)
- Terms:
 - need not be ≥ 1 word (notebook, washer)

Collocations of Special Interest

- Idioms: really fixed phrases
 - · kick the bucket, birds-of-a-feather, run for office
- Proper names: difficult to recognize even with lists
 - Tuesday (person's name), May, Winston Churchill, IBM, Inc.
- Numerical expressions
 - containing "ordinary" words
 - Monday Oct 04 1999, two thousand seven hundred fifty
- Phrasal verbs
 - Separable parts:
 - look up, take off

Further Notions

- Synonymy: different form/word, same meaning:
 - notebook / laptop
- Antonymy: opposite meaning:
 - new/old, black/white, start/stop
- · Homonymy: same form/word, different meaning:
 - "true" (random, unrelated): can (aux. verb / can of Coke)
 - related: polysemy; notebook, shift, grade, ...
- Other:
 - Hyperonymy/Hyponymy: general vs. special: vehicle/car
 - Meronymy/Holonymy: whole vs. part: body/leg

How to Find Collocations?

- Frequency
 - plain
 - filtered
- Hypothesis testing
 - -t test
 - $-\chi^2$ test
- Pointwise ("poor man's") Mutual Information
- (Average) Mutual Information

Frequency

- Simple
 - Count n-grams; high frequency n-grams are candidates:
 - mostly function words
 - frequent names
- Filtered
 - Stop list: words/forms which (we think) cannot be a part of a collocation
 - a, the, and, or, but, not, ...
 - Part of Speech (possible collocation patterns)
 - A+N, N+N, N+of+N, ...

C(a,b)	а	b	C(a,b)	a	b
80871	of	the	11487	New	York
58841	in	th	7261	United	Sates
26430	to	the	5412	Los	Angeles
21842	on	the	3301	last	year
21839	for	the	3191	Saudi	Arabia
18568	and	the	2699	last	week
16121	that	the	2514	vice	president
15630	at	the	2378	Persian	Gulf
15494	to	be	2161	San	Francisco
13899	in	а	2106	Presiden	Bush
13689	of	а	2001	Middle	East
13361	by	the	1942	Saddan	Hussein

Hypothesis Testing

- Hypothesis
 - something we test (against)
- Most often:
 - compare possibly interesting thing vs. "random" chance
 - "Null hypothesis":
 - something occurs by chance (that's what we suppose).
 - Assuming this, prove that the probability of the "real world" is then too low (typically < 0.05, also 0.005, 0.001)... therefore reject the null hypothesis (thus confirming "interesting" things are happening!)
 - Otherwise, it's possibile there is nothing interesting.

Hypothesis Testing

- Conclusions are about Ho
 - reject Ho in favour of H_I
 - do no reject Ho
- we never can conclude
 - reject H_I, or even
 - accept H_I

Results on an Hypothesis test

		Decision		
		Reject Ho	Don't reject	
Truth	Ho Type I Error		Righ Decision	
	H_I	Righ Decision	Type II Error	

Significance level

• P(type I error) = significance level = α

t test (Student's *t* test)

- Significance of difference
 - compute "magic" number against normal distribution (mean μ)
 - using real-world data: (x' real data mean, s² variance, N size):
 - $t = (x^{\circ} \mu) / \sqrt{s^2} / N$
 - find in tables (see MS, p. 609):
 - d.f. = degrees of freedom (parameters which are not determined by other parameters)
 - percentile level p = 0.05 (or better)
 - the bigger t:
 - the better chances that there is the interesting feature we hope for (i.e. we can reject the null hypothesis)
 - t: at least the value from the table(s)

t test on words

- null hypothesis: independence
 - mean μ : $\mathbf{p}(\mathbf{w}_1) \mathbf{p}(\mathbf{w}_2)$
- data estimates:
 - x' = MLE of joint probability from data
 - s² is p(1-p), i.e. almost p for small p; N is the data size
- Example: (d.f. ~ sample size)
 - 'general term' (homework corpus): c(general) = 108, c(term) = 40
 - c(general,term) = 2; expected p(general)p(term) = 8.8E-8
 - t = (9.0E-6 8.8E-8) / (9.0E-6 / 221097)^{1/2} = 1.40 (not > 2.576) thus
 'general term' is not a collocation with confidence 0.005
 - 'true species': (84/1779/9): t = 2.774 > 2.576 !!

Pearson's Chi-square test

- χ² test (general formula): Σ_{i,j} (O_{ij}-E_{ij})² / E_{ij}
 where O_{ij}/E_{ij} is the observed/expected count of events i, j
- for two-outcomes-only events:

$\mathbf{w}_{night} \setminus \mathbf{w}_{left}$	= true	≠ true
= species	9	1,770
≠ species	75	219,243

 $\chi^2 = 221097(219243x9-75x1770)^2/1779x84x221013x219318 = 103.39 > 7.88$ (at .005 thus we can reject the independence assumption)

Pointwise Mutual Information

- This is <u>NOT</u> the MI as defined in Information Theory

 (IT: average of the following; not of <u>values</u>)
- ...but might be useful: I'(a,b) = log₂ (p(a,b) / p(a)p(b)) = log₂ (p(a|b) / p(a))
 Example (same):

I'(true,species) = log₂ (4.1e-5/3.8e-4 x 8.0e-3) = 3.74

 $I'(general,term) = \log_2 (9.0e-6 / 1.8e-4 \times 4.9e-4) = 6.68$

- · measured in bits but it is difficult to give it an interpretation
- used for ranking (~ the null hypothesis tests)

Mutual Information and Word Classes

The Problem

- Not enough data
 - · Language Modeling: we do not see "correct" n-grams
 - solution so far: smoothing
 - suppose we see:
 - short homework, short assignment, simple homework
 - but not:
 - simple assignment
 - What happens to our (bigram) LM?
 - p(homework | simple) = high probability
 - p(assignment | simple) = low probability (smoothed with p(assignment))
 - They should be much closer!

Word Classes

- Observation: similar words behave in a similar way
 - trigram LM:
 - in the ... (all nouns/adj);
 - catch a ... (all things which can be catched, incl. their accompanying adjectives);
 - trigram LM, conditioning:
 - a ... homework (any atribute of homework: short, simple, late, difficult),
 - ... the woods (any verb that has the woods as an object: walk, cut, save)

- trigram LM: both:

- a (short,long,difficult,...) (homework,assignment,task,job,...)

Solution

- Use the Word Classes as the "reliability" measure
- Example: we see
 - short homework, short assignment, simple homework
 - but not:
 - simple assignment
 - Cluster into classes:
 - (short, simple) (homework, assignment)
 - covers "simple assignment", too
- Gaining: realistic estimates for unseen n-grams
- Loosing: accuracy (level of detail) within classes

The New Model

- Rewrite the n-gram LM using classes:
 - Was: [k = 1..n]
 - $p_k(w_i|h_i) = c(h_i,w_i) / c(h_i)$ [history: (k-1) words]
 - Introduce classes:

$$\mathbf{p}_{k}(\mathbf{w}_{i}|\mathbf{h}_{i}) = \mathbf{p}(\mathbf{w}_{i}|\mathbf{e}_{i}) \mathbf{p}_{k}(\mathbf{e}_{i}|\mathbf{h}_{i}) \bullet$$

• history: <u>classes, too: [for trigram</u>: $h_i = c_{i-2}, c_{i-1}, bigram: h_i = c_{i-1}]$

- Smoothing as usual
 - + over $p_k(w_i|h_i)$, where each is defined as above (except uniform which stays at 1/|V|)

Training Data

- Suppose we already have a mapping:
 r: V → C assigning each word its class (c_i = r(w_i))
- Expand the training data:

 $- T = (\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{|T|})$ into

- $T_{C} = (\langle w_{1}, r(w_{1}) \rangle, \langle w_{2}, r(w_{2}) \rangle, ..., \langle w_{|T|}, r(w_{|T|}) \rangle)$
- · Effectively, we have two streams of data:
 - word stream: $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_{|T|}$
 - class stream: $c_1, c_2, ..., c_{|T|}$ (def. as $c_i = r(w_i)$)
- · Expand Heldout, Test data too

Training the New Model

• As expected, using ML estimates:

 $- p(w_i|c_i) = p(w_i|r(w_i)) = c(w_i) / c(r(w_i)) = c(w_i) / c(c_i)$

• $!!! c(w_i, c_i) = c(w_i) [since c_i determined by w_i]$

$$-\mathbf{p}_{\mathbf{k}}(\mathbf{c}_{\mathbf{i}}|\mathbf{h}_{\mathbf{i}})$$
:

- $\mathbf{p}_3(\mathbf{c}_i|\mathbf{h}_i) = \mathbf{p}_3(\mathbf{c}_i|\mathbf{c}_{i-2},\mathbf{c}_{i-1}) = \mathbf{c}(\mathbf{c}_{i-2},\mathbf{c}_{i-1},\mathbf{c}_i) / \mathbf{c}(\mathbf{c}_{i-2},\mathbf{c}_{i-1})$
- $\mathbf{p}_2(\mathbf{e}_i|\mathbf{h}_i) = \mathbf{p}_2(\mathbf{e}_i|\mathbf{e}_{i-1}) = \mathbf{c}(\mathbf{e}_{i-1},\mathbf{e}_i) / \mathbf{c}(\mathbf{e}_{i-1})$
- $\mathbf{p}_1(\mathbf{e}_i | \mathbf{h}_i) = \mathbf{p}_1(\mathbf{e}_i) = \mathbf{c}(\mathbf{e}_i) / |\mathbf{T}|$
- Then smooth as usual
 - not the $p(w_i|c_i)$ nor $p_k(c_i|h_i)$ individually, but the $p_k(w_i|h_i)$

Classes: How To Get Them

- We supposed the classes are given
- Maybe there are in [human] dictionaries, but...
 - dictionaries are incomplete
 - dictionaries are unreliable
 - do not define classes as equivalence relation (overlap)
 - do not define classes suitable for LM
 - small, short... maybe; small and difficult?
- \rightarrow we have to construct them from data (again...)

Creating the Word-to-Class Map

- · We will talk about bigrams from now
- Bigram estimate:

• $\mathbf{p}_2(\mathbf{c}_i|\mathbf{h}_i) = \mathbf{p}_2(\mathbf{c}_i|\mathbf{c}_{i-1}) = \mathbf{c}(\mathbf{c}_{i-1},\mathbf{c}_i) / \mathbf{c}(\mathbf{c}_{i-1}) = \mathbf{c}(\mathbf{r}(\mathbf{w}_{i-1}),\mathbf{r}(\mathbf{w}_i)) / \mathbf{c}(\mathbf{r}(\mathbf{w}_{i-1}))$

• Form of the model:

- just raw bigram for now:

• $P(T) = \prod_{i=1,|T|} p(w_i | r(w_i)) p_2(r(w_i)) | r(w_{i-1})) (p_2(e_1 | e_0) =_{df} p(e_1))$

- Maximize over r (given $r \rightarrow fixed p, p_2$):
 - define objective $L(r) = 1/|T| \sum_{i=1,|T|} \log(p(w_i | r(w_i)) p_2(r(w_i)) | r(w_{i-1})))$
 - $r_{best} = argmax_r L(r)$ (L(r) = norm. logprob of training data... as usual)

Simplifying the Objective Function

• Start from $L(r) = 1/|T| \sum_{i=1,|T|} \log(p(w_i|r(w_i)) p_2(r(w_i)|r(w_{i-1}))):$ $1/|T| \sum_{i=1,|T|} \log(p(w_i|r(w_i)) p(r(w_i)) p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) =$ $1/|T| \sum_{i=1,|T|} \log(p(w_i)) p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) =$ $1/|T| \sum_{i=1,|T|} \log(p(w_i)) + 1/|T| \sum_{i=1,|T|} \log(p_2(r(w_i)|r(w_{i-1})) / p(r(w_i))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p_2(r(w_i)|r(w_{i-1})) p(r(w_{i-1})) p(r(w_i)))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p(r(w_i),r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_i)))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p(r(w_i),r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_{i})))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p(r(w_i),r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_{i})))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p(r(w_i),r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_{i})))) =$ $-H(W) + 1/|T| \sum_{i=1,|T|} \log(p(r(w_i),r(w_{i-1})) / (p(r(w_{i-1})) p(r(w_{i})))) =$

(event E picks class adjacent (to the right) to the one picked by D)

• Since W does not depend on r, we ended up with I(D,E).

Maximizing Mutual Information (dependent on the mapping r)

- Result from previous foil:
 - Maximizing the probability of data amounts to maximizing I(D,E), the mutual information of the <u>adjacent classes</u>.
- Good:
 - We know what a MI is, and we know how to maximize.
- Bad:
 - There is no way how to maximize over so many possible partitionings: $|V|^{|V|}$ no way to test them all.

Training or Heldout?

- Training:
 - best I(D,E): all words in a class of its own
 - \rightarrow will not give us anything new.
- Heldout: ok, but:
 - must smooth to test any possible partitioning (unfeasible):
 - \rightarrow using raw model: 0 probability of heldout (almost) guaranteed
 - \rightarrow will not be able to compare anything
 - some smoothing estimates? (to be explored...)
- Solution:
 - use training anyway, but only keep I(D,E) as large as possible

The Greedy Algorithm

- Define merging operation on the mapping r: $V \rightarrow C$:
 - merge: $R \times C \times C \rightarrow R' \times C^{-1}$: (r,k,l) \rightarrow r',C' such that
 - C⁻¹ = {C {k,l} \cup {m}} (throw out k and l, add new m \notin C)
 - $r'(w) = \dots m \text{ for } w \in r_{INV}(\{k,l\}),$ $\dots r(w) \text{ otherwise.}$
- 1. Start with each word in its own class (C = V), r = id.
- 2. Merge two classes k,l into one, m, such that

 (k,l) = argmax_{k,l} I_{merge(r,k,l)}(D,E).
- 3. Set new (r,C) = merge(r,k,l).
- 4. Repeat 2 and 3 until |C| reaches predetermined size.

Word Classes in Applications

- Word Sense Disambiguation: context not seen [enough(-times)]
- Parsing: verb-subject, verb-object relations
- Speech recognition (acoustic model): need more instances of [rare(r)] sequences of phonemes
- Machine Translation: translation equivalent selection [for rare(r) words]

Markov Models

Review: Markov Process

 Bayes formula (chain rule): $P(W) = P(W_1, W_2, ..., W_T) = \prod_{i=1, T} p(W_i | W_1, W_2, ..., W_{i-n+1}, ..., W_{i-1})$ Pproximation • n-gram language models: - Markov process (chain) of the order n-1: $P(W) = P(W_1, W_2, ..., W_T) = \prod_{i=1,T} p(W_i | W_{i,n+1}, W_{i,n+2}, ..., W_{i,1})$ Using just <u>one</u> distribution (Ex.: trigram model: $p(w_i|w_{i-2},w_{i-1})$): 1 2 <u>3 4 5</u> 6 7 8 9 10 11 <u>12 13 14</u> 15 16 Positions: My car (broke down) and within hours Bob's car (broke down) too . Words: $p(|broke down) = p(w_5|w_3,w_4) = p(w_{14}|w_{12},w_{13})$

Markov Properties

 Generalize to any process (not just words/LM): - Sequence of random variables: $X = (X_1, X_2, ..., X_T)$ - Sample space S (*states*), size N: S = $\{s_0, s_1, s_2, ..., s_N\}$ 1. Limited History (Context, Horizon): $\forall i \in 1..T; \underline{P(X_i|X_1,...,X_{i-1})} = P(X_i|X_{i-1})$ **173790673**45... **173790673**45... 2. Time invariance (M.C. is stationary, homogeneous) $\forall i \in 1..T, \forall y, x \in S; P(X_i = y | X_{i-1} = x) = p(y | x)$ 1 7 3 7 9 0 6 7 3 4 5... $\langle \uparrow \rangle \uparrow ?_{\bullet} \langle \uparrow \circ k...same distribution$

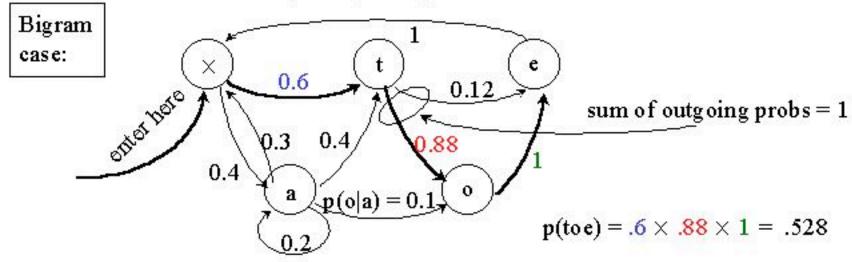
Long History Possible

- What if we want trigrams: 1 7 3 7 9 0 6 7 3 4 5...
- Formally, use transformation: Define new variables Q_i, such that X_i = {Q_{i-1},Q_i}: Then

 $P(X_{i}|X_{i-1}) = P(Q_{i-1},Q_{i}|Q_{i-2},Q_{i-1}) = P(Q_{i}|Q_{i-2},Q_{i-1})$ Predicting (X_i): 1 7 3 7 9 0 6 7 3 4 5... X 1 7 3 ... 0 6 7 3 4 5...History (X_{i-1} = {Q_{i-2},Q_{i-1}}): X 1 7 3 ... 0 6 7 3 4 5...

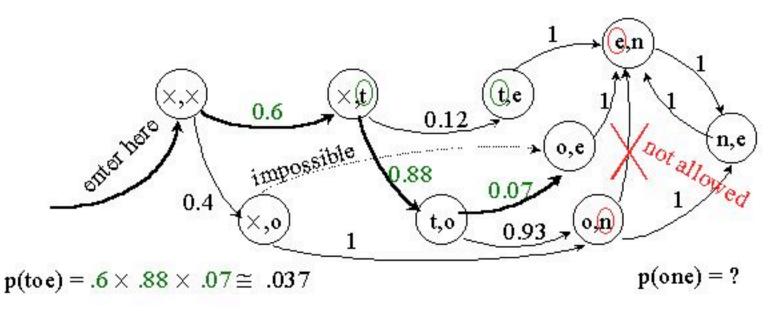
Graph Representation: State Diagram

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states
- Distribution $P(X_i|X_{i-1})$:
 - · transitions (as ares) with probabilities attached to them:



The Trigram Case

- $S = \{s_0, s_1, s_2, ..., s_N\}$: states: pairs $s_i = (x, y)$
- Distribution P(X_i|X_{i-1}): (r.v. X: generates pairs s_i)



Finite State Automaton

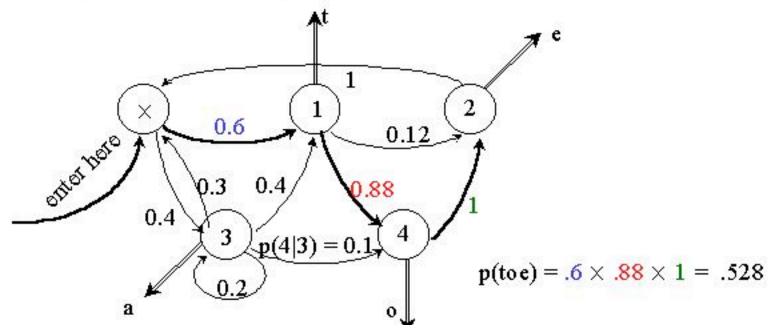
- States ~ symbols of the [input/output] alphabet
 - pairs (or more): last element of the n-tuple
- Arcs ~ transitions (sequence of states)
- [Classical FSA: alphabet symbols on arcs:

- transformation: arcs \leftrightarrow nodes]

- Possible thanks to the "limited history" M'ov Property
- So far: *Visible* Markov Models (VMM)

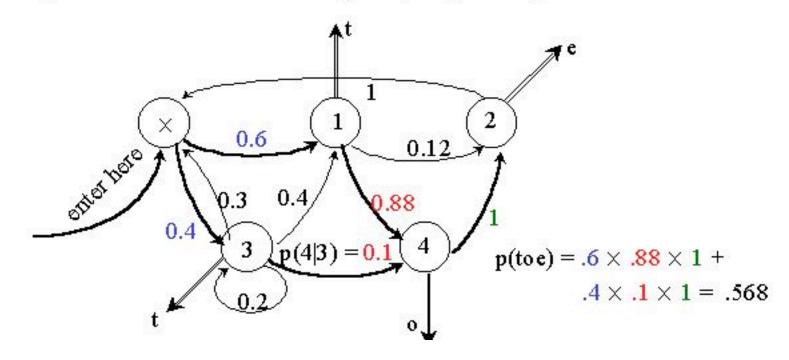
Hidden Markov Models

• The simplest HMM: states generate [observable] output (using the "data" alphabet) but remain "invisible":



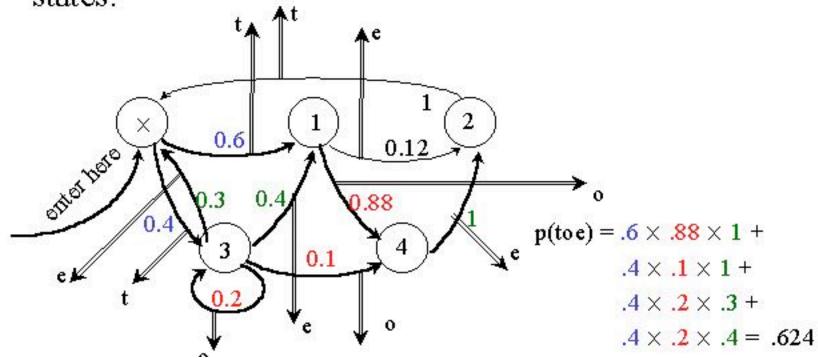
Added Flexibility

• So far, no change; but different states may generate the same output (why not?):



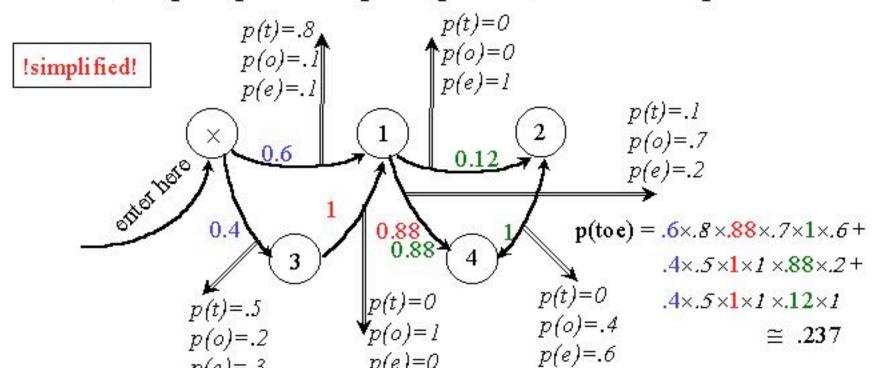
Output from Arcs...

• Added flexibility: Generate output from arcs, not states:



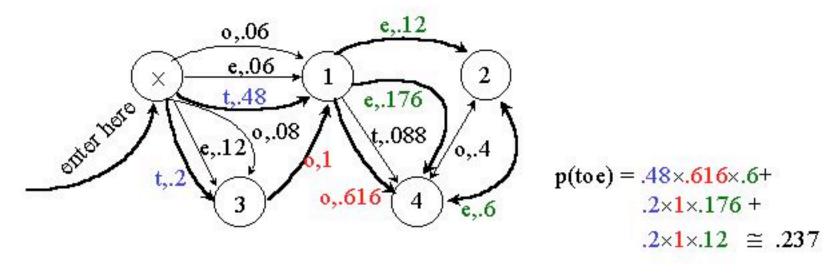
... and Finally, Add Output Probabilities

 Maximum flexibility: [Unigram] distribution (sample space: output alphabet) at each output arc:



Slightly Different View

 Allow for multiple arcs from s_i → s_j, mark them by output symbols, get rid of output distributions:



In the future, we will use the view more convenient for the problem at hand.

Formalization

- HMM (the most general case):
 - five-tuple (S, s_0 , Y, P_S , P_Y), where:
 - $S = \{s_0, s_1, s_2, ..., s_T\}$ is the set of states, s_0 is the initial state,
 - $Y = \{y_1, y_2, \dots, y_V\}$ is the output alphabet,
 - $P_S(s_j|s_i)$ is the set of prob. distributions of transitions, - size of P_S : $|S|^2$.
 - + $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions. – size of P_Y : $|S|^2 \ge |Y|$
- Example:

$$- S = \{x, 1, 2, 3, 4\}, s_0 = x$$

- Y = { t, o, e }

Formalization - Example

• Example (for graph, see foils 11,12): $-S = \{x, 1, 2, 3, 4\}, s_0 = x$ $-Y = \{e, o, t\}$ e х $\Sigma = 1$ х $-P_{\rm S}$: P_{Y} : х t x .6 .4 х х .8 .5 .12 0 .88 .1 $\rightarrow \Sigma = 1$

Using the HMM

- The generation algorithm (of limited value :-)):
 - 1. Start in $s = s_0$.
 - 2. Move from s to s' with probability $P_S(s'|s)$.
 - 3. Output (emit) symbol y_k with probability $P_S(y_k|s,s')$.
 - 4. Repeat from step 2 (until somebody says enough).
- More interesting usage:
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute its probability.
 - Given an output sequence $Y = \{y_1, y_2, ..., y_k\}$, compute the most likely sequence of states which has generated it.
 - ...plus variations: e.g., n best state sequences

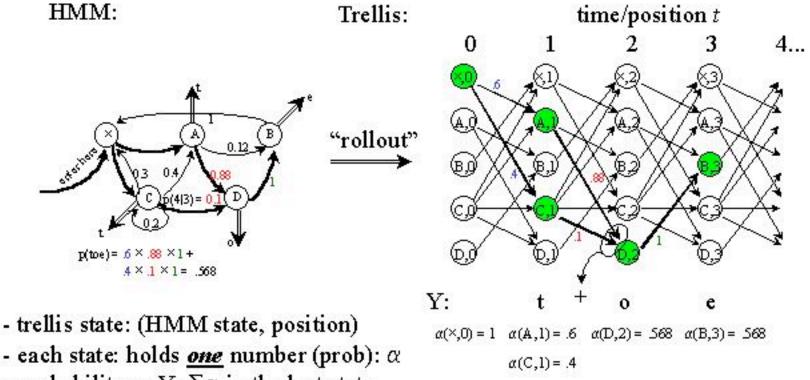
HMM algorithms: Trellis and Viterbi

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S_0 , Y, P_S , P_Y), where:
 - $S = \{s_1, s_2, ..., s_T\}$ is the set of states, S_0 is the initial state,
 - $Y = \{y_1, y_2, \dots, y_V\}$ is the output alphabet,
 - $P_S(s_i|s_i)$ is the set of prob. distributions of transitions,
 - $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- Given an HMM & an output sequence Y = {y₁,y₂,...,y_k}: (Task 1) compute the probability of Y;

(Task 2) compute the most likely sequence of states which has generated Y.

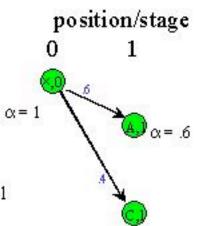
Trellis - Deterministic Output



- probability or $Y: \Sigma \alpha$ in the last state

Creating the Trellis: The Start

- Start in the start state (×),
 set its α(×,θ) to 1.
- Create the first stage:
 - get the first "output" symbol y₁
 - create the first stage (column)
 - but only those trellis states
 - which generate y_1 y_1 : t
 - set their $\alpha(state, I)$ to the $P_{S}(state | \times) \alpha(\times, \theta)$
- ...and forget about the θ -th stage

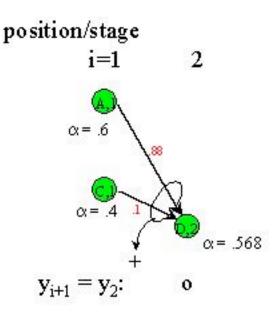


Trellis: The Next Step

- Suppose we are in stage *i*
- Creating the next stage:

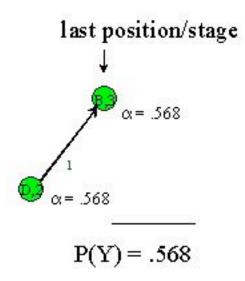
 create all trellis states in the next stage which generate
 y_{i+1}, but only those reachable
 from any of the stage-i states
 set their α(state,i+l) to:

P_S(state|prev.state) × α(prev.state, i)
(add up all such numbers on arcs going to a common trellis state)
- ...and forget about stage i



Trellis: The Last Step

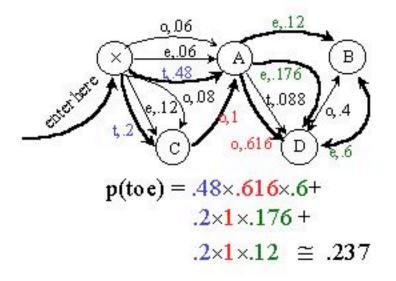
- Continue until "output" exhausted
 |Y| = 3: until stage 3
- Add together all the $\alpha(state, |Y|)$
- That's the <u>P(Y)</u>.
- Observation (pleasant):
 - memory usage max: 2|S|
 - multiplications max: |S|2|Y|



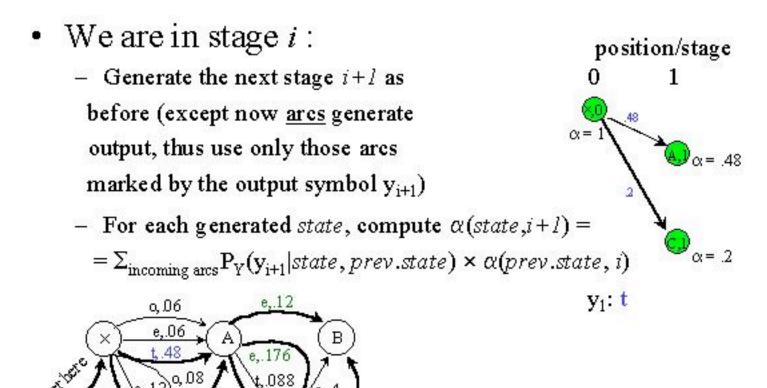
Trellis: The General Case (still, bigrams)

• Start as usual:

- start state (x), set its $\alpha(x, \theta)$ to 1.

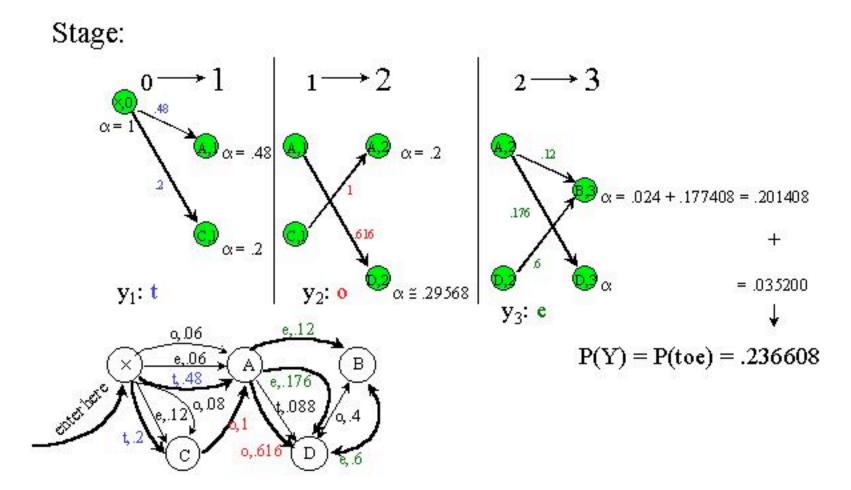


General Trellis: The Next Step



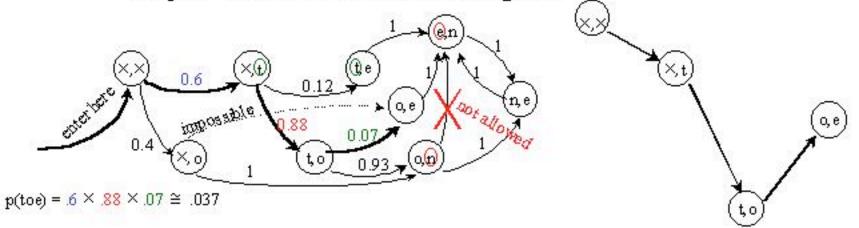
... and forget about stage i as usual.

Trellis: The Complete Example



The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - output function always emits the second output symbol of the pair (state) to which the arc goes:



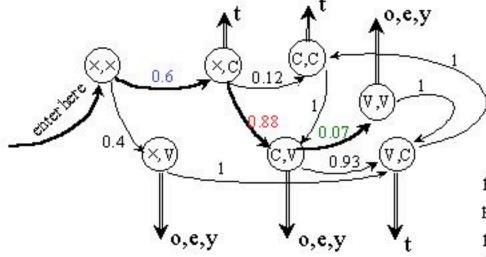
Multiple paths not possible \rightarrow trellis not really needed

Trigrams with Classes

• More interesting:

- n-gram class LM: $p(\mathbf{w}_i | \mathbf{w}_{i-2}, \mathbf{w}_{i-1}) = p(\mathbf{w}_i | \mathbf{c}_i) p(\mathbf{c}_i | \mathbf{c}_{i-2}, \mathbf{c}_{i-1})$

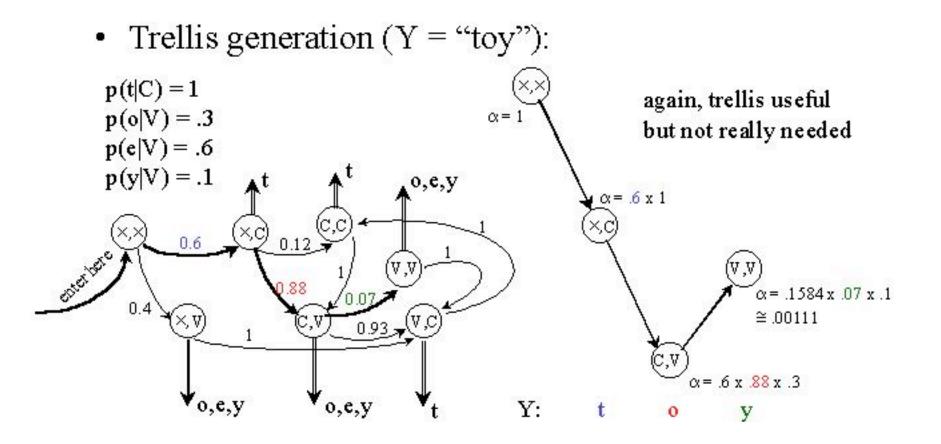
 \rightarrow states are pairs of classes (c_{i-1}, c_i) , and emit "words": (letters in our example)



p(t|C) = 1usual,p(o|V) = .3non-p(e|V) = .6overlappingp(y|V) = .1classes

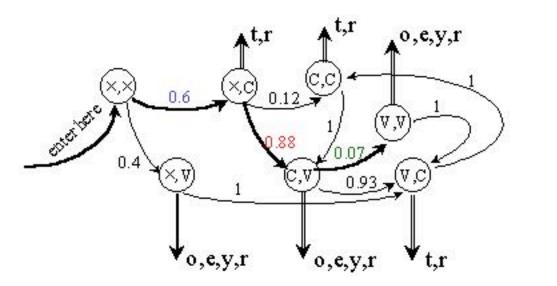
 $p(toe) = .6 \times 1 \times .88 \times .3 \times .07 \times .6 \cong .00665$ $p(teo) = .6 \times 1 \times .88 \times .6 \times .07 \times .3 \cong .00665$ $p(toy) = .6 \times 1 \times .88 \times .3 \times .07 \times .1 \cong .00111$ $p(ttv) = .6 \times 1 \times .12 \times 1 \times .1 \cong .0072$

Class Trigrams: the Trellis



Overlapping Classes

- Imagine that classes may overlap
 - e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:

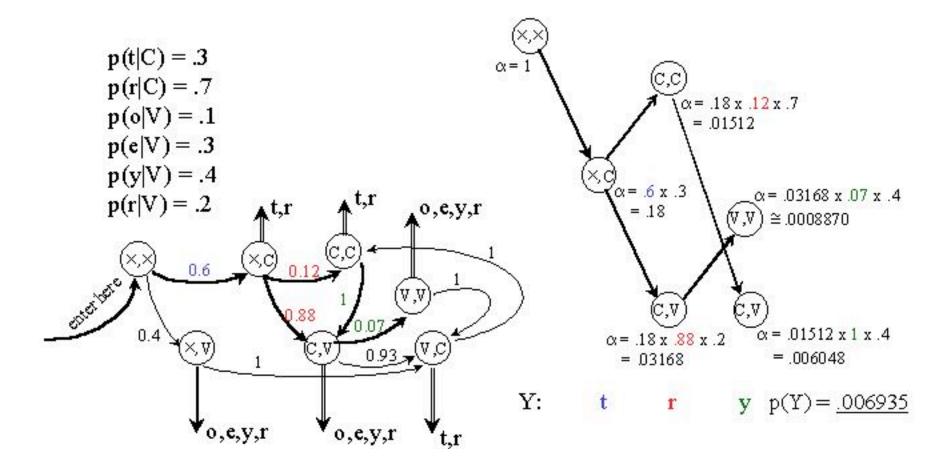


$$p(t|C) = .3$$

 $p(r|C) = .7$
 $p(o|V) = .1$
 $p(e|V) = .3$
 $p(y|V) = .4$
 $p(r|V) = .2$

p(try) = ?

Overlapping Classes: Trellis Example



Trellis: Remarks

- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

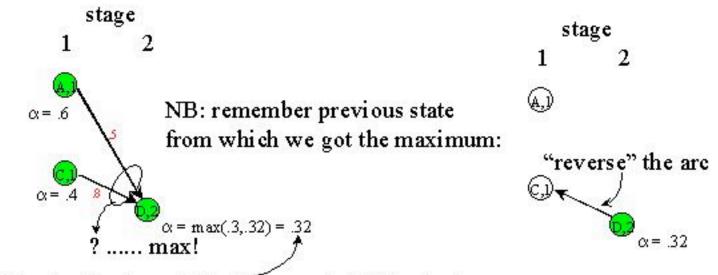
 $S_{best} = argmax_{s}P(S|Y)$

which is equal to (Y is constant and thus P(Y) is fixed):

$$\begin{split} \mathbf{S}_{\text{best}} &= \operatorname{argmax}_{S} \mathbf{P}(S, \mathbf{Y}) = \\ &= \operatorname{argmax}_{S} \mathbf{P}(\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2}, \dots, \mathbf{s}_{k}, \mathbf{y}_{1}, \mathbf{y}_{2}, \dots, \mathbf{y}_{k}) = \\ &= \operatorname{argmax}_{S} \Pi_{i=1..k} \mathbf{p}(\mathbf{y}_{i} | \mathbf{s}_{i}, \mathbf{s}_{i-1}) \mathbf{p}(\mathbf{s}_{i} | \mathbf{s}_{i-1}) \end{split}$$

The Crucial Observation

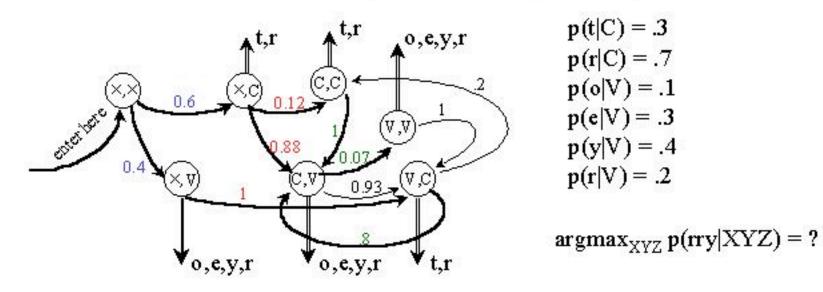
 Imagine the trellis build as before (but do not compute the αs yet; assume they are o.k.); stage *i*:



this is certainly the "backwards" maximum to (D,2)... but it <u>cannot change even whenever we go forward</u> (M. Property: Limited History)

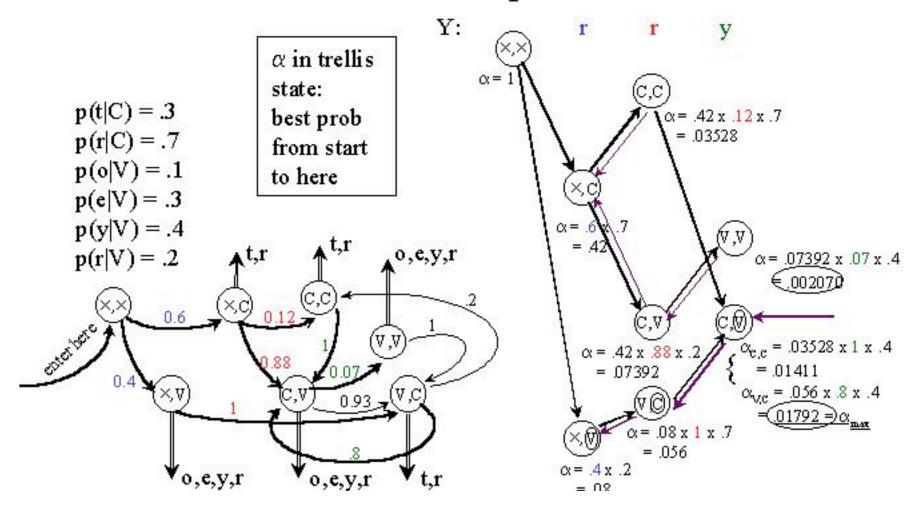
Viterbi Example

• 'r' classification (C or V?, sequence?):



Possible state seq.: $(\times v)(v,c)(c,v)[VCV]$, $(\times c)(c,c)(c,v)[CCV]$, $(\times c)(c,v)(v,v)[CVV]$

Viterbi Computation

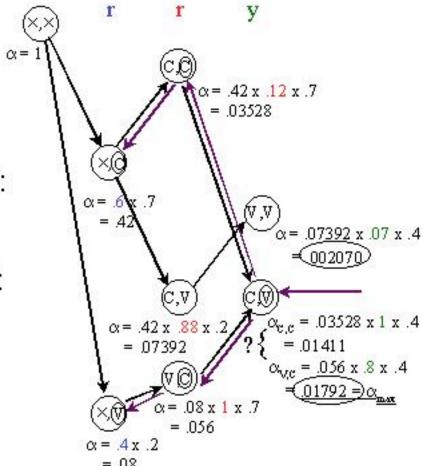


<u>n</u>-best State Sequences

Keep track
 of <u>n</u> best
 "back pointers":

Y:

 Ex.: n= 2: Two "winners": VCV (best) CCV (2nd best)

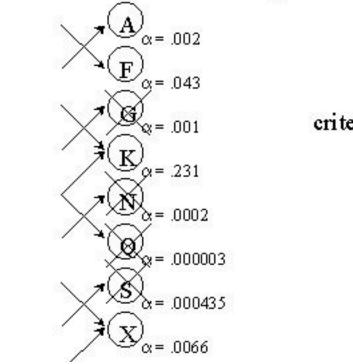


Tracking Back the n-best paths

- Backtracking-style algorithm:
 - Start at the end, in the best of the n states (sbest)
 - Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the <u>best</u> back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

Pruning

• Sometimes, too many trellis states in a stage:



eriteria: (a) α < threshold
 (b) Σπ < threshold
 (c) # of states > threshold
 (get rid of smallest α)

Introduction to Parsing

Context-free Grammars

- Chomsky hierarchy
 - Type 0 Grammars/Languages
 - rewrite rules $\alpha \rightarrow \beta$; α, β are any string of terminals and nonterminals
 - Context-sensitive Grammars/Languages
 - rewrite rules: αXβ → αγβ, where X is nonterminal, α,β,γ any string of terminals and nonterminals (γ must not be empty)
 - <u>Context-free Grammars/Lanuages</u>
 - + rewrite rules: X \to $\gamma\!\!,$ where X is nonterminal, γ any string of terminals and nonterminals
 - Regular Grammars/Languages
 - + rewrite rules: $X\to \alpha$ Y where X,Y are nonterminals, α string of terminal symbols; Y might be missing

Parsing Regular Grammars

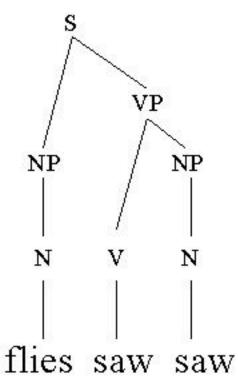
- Finite state automata
 - Grammar ↔ regular expression ↔ finite state automaton
- Space needed:
 - constant
- Time needed to parse:
 - linear (~ length of input string)
- Cannot do e.g. aⁿbⁿ, embedded recursion (contextfree grammars can)

Parsing Context Free Grammars

- Widely used for surface syntax description (or better to say, for correct word-order specification) of natural languages
- Space needed:
 - stack (sometimes stack of stacks)
 - in general: items ~ levels of actual (i.e. in data) recursions
- Time: in general, $O(n^3)$
- Cannot do: e.g. aⁿbⁿcⁿ (Context-sensitive grammars can)

Example Toy NL Grammar

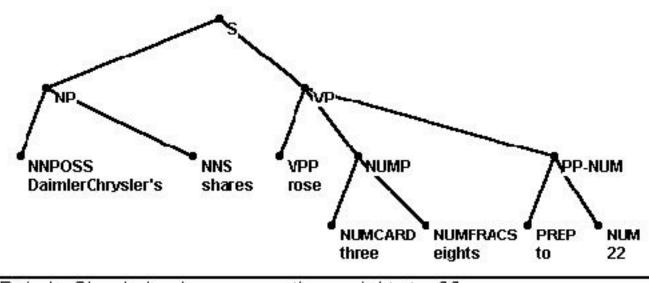
- #1 S → NP
 #2 S → NP VP
 #3 VP → V NP
 #4 NP → N
 #5 N → flies
- #6 N \rightarrow saw
- #7 V \rightarrow flies
- #8 V \rightarrow saw



Treebanks, Evaluation

Phrase Structure Tree

• Example:

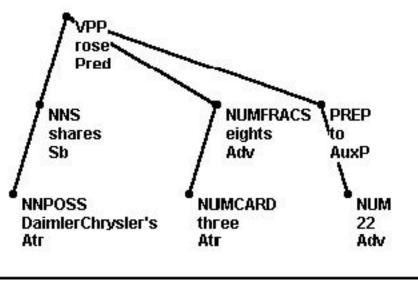


DaimlerChrysler's shares rose three eights to 22

((DaimlerChrysler's shares)_{NP} (rose (three eights)_{NUMP} (to 22)_{PP-NUM})_{VP})_S

Dependency Tree

• Example:



DaimlerChrysler's shares rose three eights to 22

 $rose_{Pred}(shares_{Sb}(DaimlerChrysler's_{Atr}), eights_{Adv}(three_{Atr}), to_{AuxP}(22_{Adv}))$

Data Selection and Size

- Type of data
 - Task dependent (Newspaper, Journals, Novels, Technical Manuals, Dialogs, ...)
- Size
 - The more the better! (Resource-limited)
- Data structure:
 - Eventually; training + development test + eval test sets
 - more test sets needed for the long term (development, evaluation)
 - Multilevel annotation:
 - training level 1, test level 1; separate training level 2, test level 2, ...

Parse Representation

- Core of the Treebank Design
- Parse representation
 - Dependency vs. Parse tree
 - Task-dependent
 - (1 : n) mapping from dependency to parse tree (in general)
 - Attributes
 - · What to encode: words, morphological, syntactic, ... information
 - At tree nodes vs. arcs
 - e.g. Word, Lemma, POSTag, Function, Phrase-name, Dep-type, ...
 - Different for leaves? (Yes parse trees, No dependency trees)
 - Reference & Bookkeeping Attributes
 - · bibliograph. ref., date, time, who did what

Low-level Representation

- Linear representation:
 - SGML/XML (Standard Generalized Markup Language)
 www.oasis-open.org/cover/sgml-xml.html
 - TEI, TEILite, CES: Text Encoding Initiative www.uic.edu/orgs/tei www.lpl.univ-aix.fr/projects/multext/CES/CES1.html
 - Extension / your own
 - Ex.: Workshop'98 (Dependency representation encoding):

www.clsp.jhu.edu/ws98/projects/nlp/doc/data/a0022.dtd

Organization Issues

• The Team

	Approx. need for
	1 mil. word size:
- Team leader; bookkeeping/hiring perso	n 1
- Guidelines person(s) (editing)	1
 Linguistic issues person 	1
– Annotators	3-5 (x2) [∞]
 Technical staff/programming 	1-2
- Checking person(s)	2

*Double-annotation if possible

Annotation

- Text vs. Graphics
 - text: easy to implement, directly stored in low-level format
 - e.g. use Emacs macros; Word macros; special SW
 - graphics: more intuitive (at least for linguists)
 - special tools needed
 - annotation
 - bookkeeping
 - "undo"
 - batch processing capability

Treebanking Plan

- The main points (apart from securing financing...):
 - Planning
 - Basic Guidelines Development
 - Annotation & Guidelines Refinement
 - Consistency Checking, Guidelines Finalization
 - Packaging and Distribution (Data, Guidelines, Viewer)
- Time needed:
 - in the order of 2 years per 1 mil. words
 - only about 1/3 of the total effort is annotation

Parser Development

- · Use training data for learning phase
 - segment as needed (e.g., for heldout)
 - use all for
 - manually written rules (seldom to day)
 - automatically learned rules/statistics
- Occasionally, test progress on <u>Development Test Set</u>
 - (simulates real-world data)
- When done, test on Evaluation Test Set
- Unbreakable Rule #1: Never look at Evaluation Test Data (not even indirectly, e.g. performance numbers)

Evaluation

- Evaluation of parsers (regardless of whether manual-rule-based or automatically learned)
- Repeat: Test against Evaluation Test Data
- Measures:
 - Dependency trees:
 - Dependency Accuracy, Precision, Recall
 - Parse trees:
 - Crossing brackets
 - · Labeled precision, recall [F-measure]

Dependency Parser Evaluation

- Dependency Recall:
 - $R_D = Correct(D) / |S|$
 - Correct(D): number of correct dependencies
 - correct: word attached to its true head
 - Tree root is correct if marked as root
 - |S| size of test data in words (since |dependencies| = |words|)
- Dependency precision (if output not a tree, partial):
 - $P_D = Correct(D) / Generated(D)$
 - Generated(D) is the number of dependencies output
 - some words without a link to their head
 - some words with several links to (several different) heads

Phrase Structure (Parse Tree) Evaluation

- Crossing Brackets measure
 - Example "truth" (evaluation test set):
 - ((the ((New York) based company)) (announced (yesterday)))
 - Parser output 0 crossing brackets:
 - ((the New York based company) (announced yesterday))
 - Parser output 2 crossing brackets:
 - (((the New York) based) (company (announced (yesterday)))))
- Labeled Precision/Recall:
 - Usual computation using bracket labels (phrase markers)
 - $T: ((Computers)_{NP} \text{ (are down)}_{VP})_S \leftrightarrow P: ((Computers)_{NP} \text{ (are } (down)_{NP})_{VP})_S$
 - Recall = 100%, Precision = 75%

PCFGs Introduction

Context-free Grammars

Chomsky hierarchy

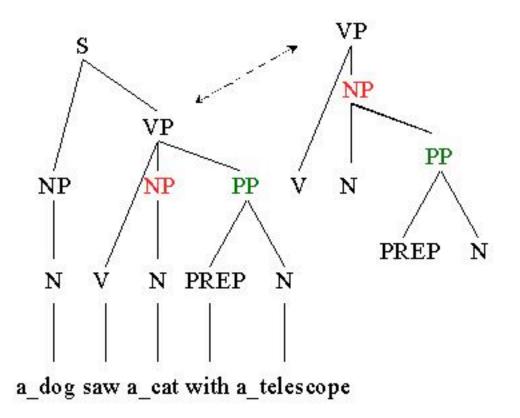
- Type 0 Grammars/Languages
 - rewrite rules $\alpha \rightarrow \beta$; α, β are any string of terminals and nonterminals
- Context-sensitive Grammars/Languages
 - rewrite rules: $\alpha X\beta \rightarrow \alpha \gamma\beta$, where X is nonterminal, α,β,γ any string of terminals and nonterminals (γ must not be empty)

- Context-free Grammars/Lanuages

- + rewrite rules: $X\to \gamma$, where X is nonterminal, γ any string of terminals and nonterminals
- Regular Grammars/Languages
 - + rewrite rules: $X \to \alpha Y$ where X,Y are nonterminals, α string of terminal symbols; Y might be missing

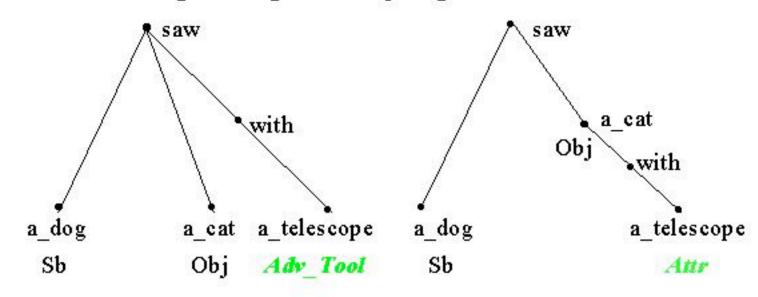
Another NLP Example

- $\bullet \quad \#1 \,\, S \to NP \, VP$
- $#2 \text{ VP} \rightarrow \text{V} \text{ NP PP}$
- * #3 VP \rightarrow V NP
- #4 NP \rightarrow N
- $#5 \text{ NP} \rightarrow \text{N PP}$
- * #6 PP \rightarrow PREP N
- $\#7 \text{ N} \rightarrow a_dog$
- $#8 \text{ N} \rightarrow a_cat$
- #9 N \rightarrow a_telescope
- $\#10 \text{ V} \rightarrow saw$
- $\#11 \text{ PREP} \rightarrow \text{with}$



Dependency Style Example

• Same example, dependency representation



Probability of a Derivation Tree

- Both phrase/parse/derivational "grammatical"
- Different meaning: which is better [in context]?
- "Internal context": relations among phrases, words
- Probabilistic CFG:
 - relations among a mother node & daughter nodes
 - in terms of expansion [rewrite,derivation] probability
 - define probability of a derivation (i.e. parse) tree:

 $P(T) = \prod_{i=1..n} p(r(i))$

r(i) are all rules of the CFG used to generate the sentence W of which T is a parse

Assumptions

- Independence assumptions (very strong!)
- Independence of context (neighboring subtrees)
- Independence of ancestors (upper levels)
- Place-independence (regardless where in tree it appears) ~ time invariance in HMM

Probability of a Rule

- Rule r(i): $A \rightarrow \alpha$;
- Let R_A be the set of all rules r(j), which have nonterminal A at the left-hand side;
- Then define probability distribution on R_A:

 $\sum_{r \in R_A} p(r) = 1, \ 0 \le p(r) \le 1$

• Another point of view:

 $p(\alpha|A) = p(r)$, where $r = A \rightarrow \alpha, \alpha \in (N \cup T)^+$

Estimating Probability of a Rule

• MLE from a treebank *following a CFG grammar*

 α_1

 α_2

 α_k

- Let's $r = A \rightarrow \alpha_1 \alpha_2 \dots \alpha_k$:
 - $p(\mathbf{r}) = \mathbf{c}(\mathbf{r}) / \mathbf{c}(\mathbf{A})$
 - Counting rules (c(r)): how many times

appears in the treebank.

- Counting nonterminals c(A):

just count'em (in the treebank)

Probability of a Derivation Tree

- Probabilistic CFG:
 - relations among a mother node & daughter nodes
 - in terms of expansion [rewrite,derivation] probability
 - define probability of a derivation (i.e. parse) tree:

 $P(T) = \prod_{i=1.n} p(r(i))$

r(i) are all rules of the CFG used to generate the sentence W of which T is a parse

- Probability of a string $W = (w_1, w_2, ..., w_n)$?
- Non-trivial, because there may be many trees T_j as a result of a parsing W.

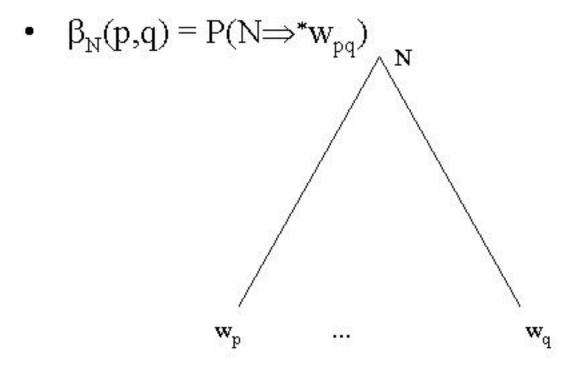
Probability of a String

- Input string: W
- Parses: $\{T_j\}_{j=1..n} = Parse(W)$.

$$P(W) = \sum_{j=1..n} P(T_j)$$

• Impossible to use the naive method.

Inside Probability



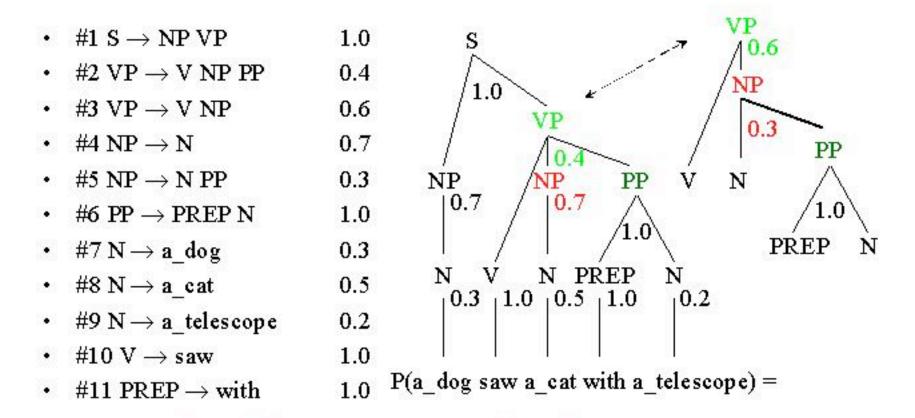
Formula for Inside Probability

• $\beta_N(p,q) =$

$$\Sigma_{A,B} \Sigma_{d=p..q-1} P(N \rightarrow A,B) \beta_A(p,d) \beta_B(d+1,q)$$

assuming the grammar G has rules of the form $N \rightarrow \omega$ (terminal string only) $N \rightarrow A B$ (two nonterminals) only (Chomsky Normal Form).

Example PCFG



 $1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 + ... \times .6 ... \times .3 ... = .00588 + .00378 = .00966$

Computing String Probability

5

a_dog saw a_cat with a_telescope

1 2 3 4

from \to 3 5 2 4 1 NP.21 S .441 S.00966 1 N .3 V 1 VP.21 VP.046 2 3 NP.35 NP.03 N .5 PREP 1 PP.2 4 5 N .2

- Create table n x n (n = length of string). Cells might have more "lines".
- Initialize on diagonal, using $N \rightarrow \alpha$ rules.
- Recursively compute along the diagonal towards the upper right corner.

Statistical Parsing

Language Model vs. Parsing Model

- Language model:
 - interested in string probability:

P(W) = probability definition using a formula such as

 $= \prod_{i=1.n} p(\mathbf{w}_i | \mathbf{w}_{i-2}, \mathbf{w}_{i-1}) \qquad \text{trigram language model}$

 $= \sum_{s \in S} p(W,s) = \sum_{s \in S} \prod_{r \in s} r \qquad PCFG; r \sim rule used in parse tree$

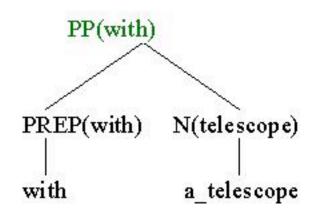
- Parsing model
 - conditional probability of tree given string:

P(s|W) = P(W,s) / P(W) = P(s) / P(W) !! P(W,s) = P(s) !!

- for argmax, just use P(s) (P(W) is constant)

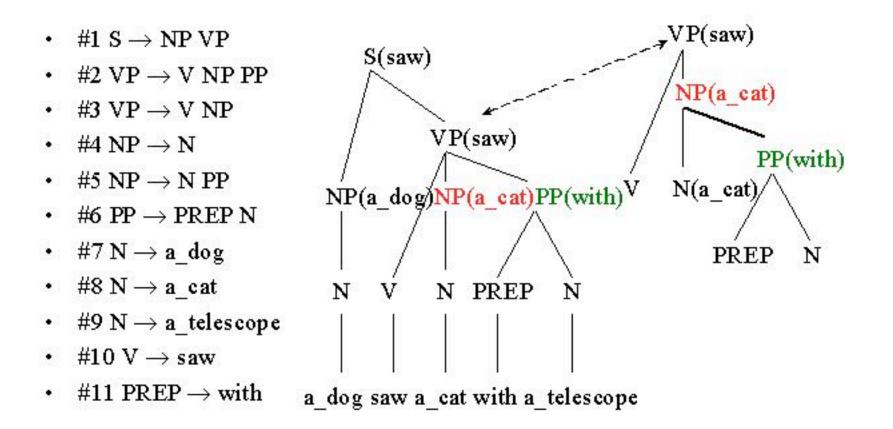
Once again, Lexicalization

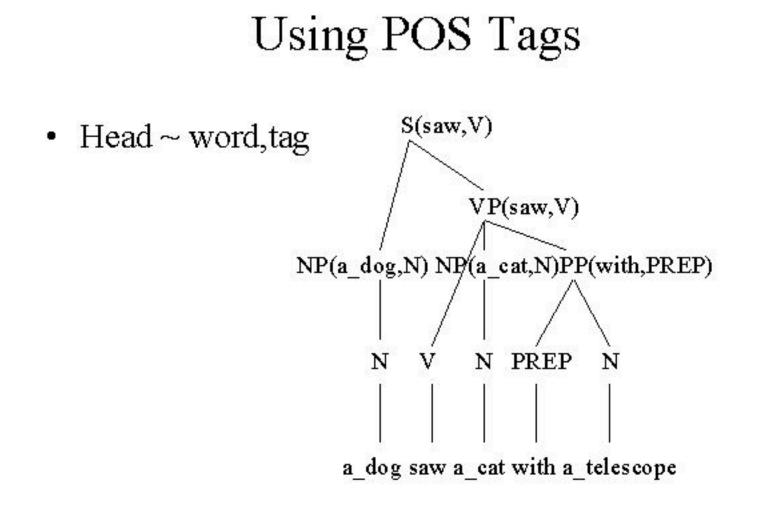
- Lexicalized parse tree (~ dependency tree+phrase labels)
- Ex. subtree:



- Pre-terminals (above leaves): assign the word below
- Recursive step (step up one level): (a) select node, (b) copy word up.

Lexicalized Tree Example





Conditioning

- Original PCFG: P(αBγDε...|A)
 No "lexical" units (words)
- · Introducing words:

 $P(\alpha B(head_B) \gamma D(head_D) \epsilon \dots |A(head_A))$

where $head_A$ is one of the heads on the left

E.g. rule VP(saw) \rightarrow V(saw) NP(a_cat): P(V(saw) NP(a_cat) | VP(saw))

Independence Assumptions

- Too many rules
- Decompose:

 $P(\alpha B(head_B) \gamma D(head_D) \epsilon \dots |A(head_A)) =$

- In general (total independence): $P(\alpha|A(head_A)) \times P(B(head_B)|A(head_A)) \times \dots \times P(\epsilon|A(head_A))$
- · Too much independent: need a compromise.

The Decomposition

- Order does not matter; let's use intuition ("linguistics"):
- Select the head daughter category: $P_{H}(H(head_{A})|A(head_{A}))$

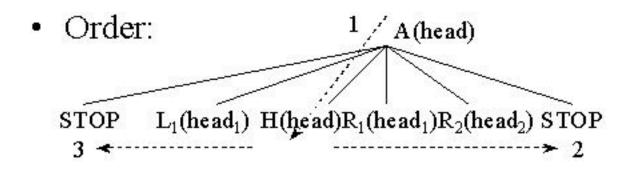
H(head)

• Select everything to the right: $P_R(R_i(r_i) | A(head_A),H)$

H(head)R₁(head₁)R₂(head₂) STOP

- Also, choose when to finish: $R_{m+1}(r_{m+1}) = STOP$
- Similarly, for the left direction: $P_L(L_i(l_i) | A(head_A),H)$

Example Decomposition



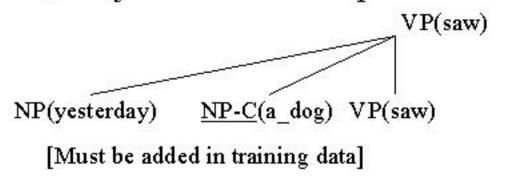
• Example: STOP V(saw) NP(a_cat) PP(with) STOP

More Conditioning: Distance

- Motivation:
 - close words tend to be dependents (or phrases) more likely
 - ex.: walking on a sidewalk on a sunny day without looking on...
- Number of words too detailed, though:
 - use more sophisticated (yet more robust) distance measure d_{rl} :
 - distinguish 0 and non-zero distance (2)
 - distinguish if verb is in-between the head and the constituent in question (2)
 - distinguish if there are commas in-between: 0, 1, 2, >2 commas (4).
 - ...total: 16 possibilities added to the condition: $P_R(R_i(r_i) | A(head_A), H, d_r)$
 - same to the left: $P_L(L_i(l_i) | A(head_A), H, d_l)$

More Conditioning: Complement/Adjunct

- So far: no distinction VP(saw) NP(yesterday) NP(a_dog) VP(saw)
- ...but: time NP ≠ subject NP
- also, Subject NP cannot repeat ... useful during parsing



More Conditioning: Subcategorization

- The problem still not solved:

 two subjects:
 <u>NP-C(Johns Hopkins)</u> <u>NP-C(the 7th-best)</u> VP(was) wrong!
- Need: relation among complements.
 - [linguistic observation: adjuncts can repeat freely.]
- Introduce:
 - Left & Right Subcategorization Frames (multisets)

Inserting Subcategorization

- Use head probability as before: $P_{H}(H(head_{A})|A(head_{A}))$
- Then, add left & right subcat frame:

 $P_{1c}(LC|A(head_A),H), P_{rc}(RC|A(head_A),H)$

- LC, RC: list (multiset) of phrase labels (not words)
- Add them to context condition:

(left) $P_L(L_i(l_i) | A(head_A), H, d_1, LC)$ [right: similar]

LC/RC: "dynamic": remove labels when generated
 P(STOP|....,LC) = 0 if LC non-empty

Smoothing

- Adding conditions... ~ adding parameters
- Sparse data problem as usual (head ~ <word,tag>!)
- Smooth (step-wise):
 - $P_{\text{smooth-H}}(H(head_A)|A(head_A)) =$
 - $\lambda_1 P_H(H(head_A)|A(head_A)) + (1 \lambda_1) P_{smooth-H}(H(head_A)|A(tag_A))$

$$- P_{\text{smooth-H}}(H(\text{head}_{A})|A(\text{tag}_{A})) = \lambda_2 P_H(H(\text{head}_{A})|A(\text{tag}_{A})) + (1-\lambda_2)P_H(H(\text{head}_{A})|A)$$

- imilarly, for D and D
- Similarly, for P_R and P_L.

The Parsing Algorithm for a Lexicalized PCFG

- Bottom-up Chart parsing
 - Elements of a chart: a pair
 - <(from-position,to-position,label,head,distance), probability> span ↑ score ↑
 - Total probability = multiplying elementary probabilities
 ⇒ enables dynamic programming:
 - · discard chart element with the same span but lower score.
- "Score" computation:
 - joining chart elements: [for 2]: $\langle e_1, p_1 \rangle$, $\langle e_2, p_2 \rangle$, $\langle e_n, p_n \rangle$:

 $P(e_{new}) = p_1 \times p_2 \times ... \times p_n \times P_H(...) \times \prod P_R(...) \times \prod P_L(...);$

Results

• English, WSJ, Penn Treebank, 40k sentences

	<40Words	< 100 Words
– Labeled Recall:	88.1%	87.5%
– Labeled Precision:	88.6%	88.1%
 Crossing Brackets (avg): 	0.91	1.07
– Sentences With 0 CBs:	66.4%	63.9%

- Czech, Prague Dependency Treebank, 13k sentences:
 - Dependency Accuracy overall: 80.0%
 (~unlabelled precision/recall)